UNIX Assembler Reference Manual

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey

0. Introduction

This document describes the usage and input syntax of\tkeDP-11 assembleas The details of theDr-11 are
not described; consult tleEc documents PpP-11/20 Handbookand “pPbrP-11/45 Handbook.

The input syntax of thenix assembler is generally similar to that of e assemblepaL-11R, dthough its inter
nal workings and output format are unrelated. It may be useful to read the publiEtidét-AsbB-D, which de-
scribesPAL-11R, dthough naturally one must use care in assuming that its rules agdy to

Asis a rather ordinary two-pass assembler without macro capabilitipeoduces an output file which contains re-
location information and a complete symbol table; thus the output is acceptableutaxttmk-editor Id, which
may be used to combine the outputs ofessd assembler runs and to obtain object programs from librafies.
output format has been designed so that if a program contains no unresolved referettegsatsgmbols, it isxe
ecutable without further processing.

1. Usage
asis used as follows:

as[ -] file, ...
If the optional “-’’ argument is gren, all undefined symbols in the current assembly will be made undefitezd-e

nal. Sedhe.globl directive kelow.

The other arguments name files which are concatenated and assembled. Thus programs may be wettn in se
pieces and assembled together.

The output of the assembler is placed on theafibeitin the current directorylf there were no unresolvedternal
references, and no errors detectadutis made recutable; otherwise, if it is produced at all, it is made non-e
ecutable.

2. Lexical conventions
Assembler tokns include identifiers (alternagly, “symbols’ or ‘‘names’), temporary symbols, constants, and op-
erators.

2.1 Identifiers

An identifier consists of a sequence of alphanumeric characters (including petipdnderscore‘'’’, and tilde

“™" as dphanumeric) of which the first may not be numeric. Only the first eight characters are signifitesmt.a

name begins with a tilde, the tilde is discarded and that occurrence of the identifier generates a unique entry in the
symbol table which can match no other occurrence of the idenfffies feature is used by the C compiler to place
names of local variables in the output symbol table without having to worry about making them unique.

2.2 Temporary symbols



Assembler Manual - 2

A temporary symbol consists of a digit followed By or “‘b’’. Temporary symbols are discussed fully in 85.1.

2.3 Constants

An octal constant consists of a sequence of dig8s;dnd “9’’ are taken to hee cctal value 10 and 11. The con-
stant is truncated to 16 bits and interpreted ingdwomplement notation.

A decimal constant consists of a sequence of digits terminated by a decimal.poiithe magnitude of the con-
stant should be representable in 15 bits; i.e., be less than 32,768.

A single-character constant consists of a single quétef‘ollowed by anascil character not a meline. Certain
dual-character escape sequences are acceptable in placexstitr@haracter to representwdine and other non-
graphics (se&tring statement$5.5). Theconstant value has the code for thevgn character in the least signifi-
cant byte of the word and is null-padded on the left.

A double-character constant consists of a double qubtefollowed by a pair olAscil characters not including

new-line. Certaindual-character escape sequences are acceptable in place of eitheysafitblearacters to repre-

sent nav-line and other non-graphics (s8&ing statement$5.5). Theconstant value has the code for the first
given character in the least significant byte and that for the second character in the most significant byte.

2.4 Operators
There are s@ral single- and double-character operators; see §6.

2.5 Blanks

Blank and tab characters may be interspersed freely between tokens, but may not be usedemishjextoépt char
acter constants)A blank or tab is required to separate adjacent identifiers or constants not otherwise separated.

2.6 Comments

The character' /'’ introduces a comment, which extends through the end of the line on which it appears.
ments are ignored by the assembler.

3. Segments

Assembled code and data fall into three segments: the tgresg the data segment, and the bgessat. Thdext
segment is the one in which the assembler begins, and it is the one into which instructions are typicallyThkaced.
UNIX system will, if desired, enforce the purity of thetteegment of programs by trapping write operations into it.
Object programs produced by the assembler must be processed by the linld€dgong its ‘-’ flag) if the tet
sement is to be write-protected single copy of the text segment is shared among all processesiting such a
program.

The data segment ivallable for placing data or instructions which will be modified durirgcation. Arything

which may go in the text segment may be put into the dgtaesg. Inprograms with write-protected, sharablgtte
segments, data segment contains the initialized but variable parts of a program. If the text segment is not pure, the
data segment begins immediately after the text segment; if the ¢gemeseis pure, the data segment begins at the
lowest 8K byte boundary after the text segment.

The bss segment may not contairy explicitly initialized code or data. The length of the bss segmerd &t of

text or data) is determined by the high-water mark of the location counter within it. The bss segment is actually an
extension of the data segment and begins immediately after it. At the staecafien of a program, the bssgse

ment is set to OTypically the bss segment is set up by statemeta@ified by

lab: . = .+10

The advantage in using the bss segment for storage that dtertgtf is that the initialization information need not
be stored in the output file. See alsiration counteandAssignment statemeriiglow.

4. Thelocation counter

One special symbol; /", is the location counterlts value at antime is the diet within the appropriate gment
of the start of the statement in which it appears. The location counter may be assigned to, with the restriction that
the current segment may not change; furthermore, the value”ah‘ay not decreaself the effect of the assign-



Assembler Manual - 3

ment is to increase the value of™, the required number of null bytes are generated (bubsgeentabove).

5. Statements

A source program is composed of a sequencstatEments Statements are separated either by new-lines or by
semicolons. Therare five kinds of statements: null statements, expression statements, assignment statements, string
statements, andekword statements.

Any kind of statement may be preceded by one or more labels.

5.1 Labels

There are tw kinds of label: name labels and numeric labélsname label consists of a name falled by a colon
(:)- The effect of a name label is to assign the currahtevand type of the location counter™to the name.An
error is indicated in pass 1 if the name is already defined; an error is indicated in pass ‘2 'ifwhktié assigned
changes the definition of the label.

A numeric label consists of a diditto 9 followed by a colon (). Such a label serves to define temporary symbols
of the form ‘nb” and “nf”’, wheren is the digit of the label. As in the case of name labels, a numeric label assigns
the current glue and type of *” to the temporary symbolHowever, sevaal numeric labels with the same digit
may be used within the same assemlibtgferences of the formnf’’ refer to the first numeric labeh':” forward

from the reference;nb” symbols refer to the firstn:” | abelbackward from the reference. This sort of temporary
label was introduced by KnutfTlie Art of Computer Bgramming Vol I: Fundamental Algorithmp Suchlabels

tend to conseryhoth the symbol table space of the assembler and\hetive powers of the programmer.

5.2 Null statements

A null statement is an empty statement (which nhayeve, havelabels). Anull statement is ignored by the as-
sembler Common examples of null statements are empty lines or lines containing only a label.

5.3 Expressiostatements

An expression statement consists of an arithmetic expression ginhipg with a lkeyword. Theassembler com-
putes its (16-bit) value and places it in the output stream, together with the appropriate relocation bits.

5.4 Assignmenstatements

An assignment statement consists of an identdiemguals sign €), and an &pression. The&aue and type of the
expression are assigned to the identifigris not required that the type or value be the same in pass 2 as in pass 1,
nor is it an error to redefine waymbol by assignment.

Any external attribute of the expression is lost across an assignmkistmeans that it is not possible to declare a
global symbol by assigning to it, and that it is impossible to define a symbol tésbefaim a non-locally defined
global symbol.

As mentioned, it is permissible to assign to the location counter 1t is required, havever, that the type of thexe
pression assigned be of the same typé.4s and it is forbidden to decrease thawe of *.” . In practice, the most
common assignment t6.” has the form‘:=.+n” f or some numben; this has the effect of generatimgnull
bytes.

5.5 Stringstatements

A string statement generates a sequence of bytes contaisingcharacters. Astring statement consists of a left
string quote‘<’’ followed by a sequence a&cii characters not including newline, followed by a right string quote
“>". Any of the Ascll characters may be replaced by a+wharacter escape sequence to represent certain non-
graphic characters, as follows:



Assembler Manual - 4

\n NL (012)
\t HT (0112)
\e EOT (004)
\0 NUL (000)
\r CR (015)
\a ACK (006)
\p PFX (033)
\\ \

\> >

The last tw are included so that the escape character and the right string quote may be repr@senszane es-
cape sequences may also be used within single- and double-character constants (seeg2.3 abo
5.6 Keyword statements

Keyword statements are numerically the most common type, since most machine instructions are of this sort.
keyword statement begins with one of the maredefined kywords of the assembler; the syntax of the remainder
depends on thesword. All the keywords are listed bele with the syntax therequire.

6. Expressions

An expression is a sequence of symbols representimdua. vitsconstituents are identifiers, constants, temporary
symbols, operators, and bratk Eactexpression has a type.

All operators in expressions are fundamentally binary in nature; if an operand is missing on the left, a O of absolute
type is assumed. Arithmetic is &g complement and has 16 bits of precision. All operatove lsgual precedence,
and expressions argatuated strictly left to right except for the effect of brackets.

6.1 Expressiomperators
The operators are:

(blank) whenthere is no operator between operands, tfexteils exactly the same as if‘a’* had ap-

peared.
+ addition
- subtraction
* multiplication
V division (note that plairt/’’ starts a comment)
& bitwise and
O bitwise or
>> logicalright shift
<< logicalleft shift
% modulo

! albisaor (not b); i.e., theor of the first operand and the ose&bmplement of the second,;
most common use is as a unary.

result has thealue of first operand and the type of the second; most often used to define ne
machine instructions with syntax identical to existing instructions.

Expressions may be grouped by use of square bratkéts.‘ (Roundparentheses are resedvfor address modes.)

6.2 Types

The assembler deals with a number of typescpfassions. Modlypes are attached t@ywvords and used to select
the routine which treats thatyword. Thetypes likely to be met explicitly are:



Assembler Manual - 5

undefined
Upon first encounteeach symbol is undefinedt may become undefined if it is assigned an unde-
fined expression. lis an error to attempt to assemble an undefined expression in pass 2; in pass 1, it
is not (except that certaireyavords require operands which are not undefined).

undefined external
A symbol which is declaredylobl but not defined in the current assembly is an undefinéetmal. If
such a symbol is declared, the link editbmust be used to load the assembleuntput with another
routine that defines the undefined reference.

absolute
An absolute symbol is one defined ultimately from a constant. Its value is unaffectedpgmssible
future applications of the link-editor to the output file.

text
The value of a t& symbol is measured with respect to the beginning of the text segment of the pro-
gram. Ifthe assembler output is link-edited, its text symbols may change in value since the program
need not be the first in the link edidutput. Mosttext symbols are defined by appearing as labels.
At the start of an assemblhe value of “.” i s text O.

data
The value of a data symbol is measured with respect to the origin of the glaensef a program.
Like text symbols, the value of a data symbol may change during a subsequent link-editor run since
previously loaded programs may \eadata sgments. Afterthe first.data statement, the value of
“."isdataO.

bss
The value of a bss symbol is measured from the beginning of the bss segment of a drogdamt
and data symbols, thelue of a bss symbol may change during a subsequent link-editor run, since
previously loaded programs mayveabss sgments. Afterthe first.bssstatement, the value df.”
is bss 0.

external absolute, text, data, or bss
symbols declaredylobl but defined within an assembly as absolute, text, data, or bss symbols may be
used exactly as if tlyavere not declaredylobl; howeve, their value and type arealable to the link
editor so that the program may be loaded with others that reference these symbols.

register
The symbols
ro...r5
fro ...fr5
Sp
pc

are predefined as register symbols. Eithey tiresymbols defined from them must be used to refer to
the six general-purpose, six floating-point, and the 2 special-purpose magdsterse Thdehavior

of the floating register names is identical to that of the corresponding geggstdrraames; the for
mer are provided as a mnemonic aid.

other types
Each leyword knavn to the assembler has a type which is used to select the routine which processes
the associatedegword statement. The behavior of such symbols when not useelyasrks is the
same as if thewere absolute.

6.3 Type propagation in expressions

When operands are combined bypeesssion operators, the result has a type which depends on the types of the
operands and on the operatdihe rules imolved are completo gate but were intended to be sensible and pre-
dictable. for purposes of expressiomakiation the important types are

undefined
absolute
text



Assembler Manual - 6

data

bss

undefined external
other

The combination rules are then: If one of the operands is undefined, the result is undieiioddoperands are ab-
solute, the result is absolute. If an absolute is combined with one obtter types’ mentioned abee, or with a
register expression, the result has the register or other type. As a consequence, one can ref&dtesi3 dtwo
operands of “other typeare combined, the result has the numericallgdartype (not that this fact is very useful,
since the glues are not made public). An “other typsdmbined with an explicitly discussed type other than abso-
lute acts like an #@solute.

Further rules applying to particular operators are:
+ If one operand is text-, data-, or bss-segment relocatable, or is an undetiénedl ethe result has
the postulated type and the other operand must be absolute.

- If the first operand is a relocatable text-, data-, or bss-segment symbol, the second operand may be
absolute (in which case the result has the type of the first operand); or the second operand may
have the same type as the first (in which case the result is absolute). If the first operdaths e
undefined, the second must be absolute. All other combinations gek ille

This operator follows no other rule than that the result hasatue wf the first operand and the
type of the second.

others ltis illegd to apply these operators towhut absolute symbols.

7. Pseudo-operations

The keywords listed belw introduce statements which generate data in unusual forms or influence the later opera-
tions of the assembleiThe metanotation

[ stuff]. ..
means that O or more instances of thexgguff may appear Also, boldface tokens are literals, italic words are sub-
stitutable.
7.1 .byte expression|[ , expression| ...

The expressiors in the comma-separated list are truncated to 8 bits and assembled in gsadggssi Theexpres-
sions must be absolute. This statement and the string statemeetasbthe only ones which assemble data one
byte at at time.

7.2 .even

If the location counter *” i s add, it is advanced by one so the next statement will be assembled at a word boundary

7.3 .if expression

The expressionmust be absolute and defined in pass 1. If its value is nonzerdf, hénored; if zero, the state-
ments between thé and the matchingendif (below) are ignored..if may be nested. The effect @f cannot &-

tend beyond the end of the input file in which it appears. (The statements are not totally ignored, inatimg follo
sense:ifs and .endifs ae scanned foland morewoer al names are entered in the symbol table. Thus names-occur
ring only inside anif will show up as mdefined if the symbol table is listed.)

7.4 .endif
This statement marks the end of a conditionally-assembled section of codd.aBeee.

7.5 .globl name[ , name] ...

This statement makes timamesexternal. Ifthey are otherwise defined (by assignment or appearance as a label)
they act within the assembly exactly as if ttgdobl statement were not\gn; hovever, the link editorld may be
used to combine this routine with other routines that refer these symbols.



Assembler Manual - 7

Corversely, if the given symbols are not defined within the current assenthly link editor can combine the output
of this assembly with that of others which define the symbols.

As discussed in 81, it is possible to force the assembler te ahatherwise undefined symbols external.

7.6 .text
7.7 .data
7.8 .bss

These three pseudo-operations cause the assemblagincalseembling into the text, data, or bss segment respec-
tively. Assembly starts in the textggment. ltis forbidden to assemble yanode or data into the bss segment, b
symbols may be defined and™m oved aout by assignment.

7.9 .comm name, expression

Provided thenameis not defined elsewhere, this statement isvelpirit to

.globl name
name = expression ~ name

That is, the type ofiameis “undefined &ternal’, and its value igxpression In fact thenamebehaes in the cur

rent assembly just l&kan undefined gternal. Havever, the link-editorld has been special-cased so that ekmal
symbols which are not otherwise defined, and whisle lsaron-zero value, are defined to lie in the bss segment, and
enough space is left after the symbol to hepressionbytes. Allsymbols which become defined in this way are
located before all the explicitly defined bss-segment locations.

8. Machineinstructions

Because of the rather complicated instruction and addressing structureepfttie the syntax of machine instruc-
tion statements isavied. Althoughthe following sections ge the syntax in detail, the 11/20 and 11/45 handbooks
should be consulted on the semantics.

8.1 Sourcesnd Destinations

The syntax of general source and destination addresses is the same. Eaclvenast bathe following forms,
wherereg is a register symbol, aredor is ary sort of expression:

syntax vords mode
reg 0 O+reg
(reg)+ 0 2+reg
—(reg) 0 4treg
expr(reg) 1 6treg
greg) 8 i+re9
reg +reg
*(reg)+ 0 3treg
*—(reg) 0 Streg
*(reg) 1 7+reg
* expr (reg) 1 7+reg
expr 1 67
Sexpr 1 27
* expr 1 7
*$ expr 1 37

The words column gves the number of addressonwds generated; thmodecolumn gves the octal address-mode
number The syntax of the address forms is identical to thaEimassemblers, except th&t ' has been substituted
for “@’' and “$" for “#”"; the UNIX typing corventions mak “@’’ and “#"’' rather incomenient.

Notice that mode™reg’’ is identical to (reg)”; that “*(reg)’’ generates an indeword (namely0); and that ad-
dresses consisting of an unadorned expression are assembled asvecretdadinces independent of the type of the
expression. ® force a non-relate reference, the form*$expr” can be used, but notice that further indirection is



Assembler Manual - 8

impossible.

8.3 Simplemachine instructions
The following instructions are defined as absolute symbols:

clc
clv
clz
cln
sec
sev
sez
sen

They therefore require no special syntakhe PDP-11 hardware allows more than one of tickear” class, or alter
natively more than one of the “sétilass to ber-ed together; this may be expressed as follows:

clc Oclv

8.4 Branch

The following instructions takan epression as operand. The expression must lie in the sgmeseas the refer
ence, cannot be undefinedternal, and its value cannot differ from the current location 6fby more than 254
bytes:

br blos

bne bvc

beq bvs

bge bhis

blt bec (=bco)
bgt bcc

ble blo

bpl bcs

bmi bes (=bcy
bhi

bes(“branch on error set”) anblec (“‘branch on error clear”) are intended to test the error bit returned by system
calls (which is the c-bit).

8.5 Extendedbranch instructions

The following symbols are followed by an expression representing an address in the same segnientfake
target address is close enough, a branch-type instruction is generated; if the addresw iaveyo & jmp will be
used.

jbr jlos
jne jve
jeq jvs
jge jhis
jit jec
jgt jec
jle jlo
ipl jcs
jmi jes
jhi

jbr turns into a plaigmp if its tamget is too remote; the others (whose names are contructed by replaciby the *
the branch instructioa’name by “j”) turn into the cowerse brancher ajmp to the target address.

8.6 Singleoperand instructions

The following symbols are names of single-operand machine instrucfidres form of address expected is dis-
cussed in §8.1 abe.



Assembler Manual - 9

clr shcb
clrb ror
com rorb
comb rol
inc rolb
incb asr
dec asrb
decb asl
neg aslb
negb jmp
adc swab
adcb tst
shc tstb

8.7 Doubleoperand instructions

The following instructions taka general source and destination (88.1), separated by a comma, as operands.

mov
movb
cmp
cmpb
bit
bitb
bic
bicb
bis
bisb
add
sub

8.8 Miscellaneoumstructions

The following instructions hee nore specialized syntaxierereg is a register namayc anddsta general source or
destination (88.1), anelpr is an expression:

jsr reg,dst

rts reg

sys expr

ash src, reg (or, als)
ashc src,reg (or,alsg
mul src, reg (or, mpy)
div src, reg (or, dvd)
xor reg, dst

sxt dst

mark  expr

sob reg, expr

sysis another name for theap instruction. Itis used to code system calls. Its operand is required tepbbessible
in 6 bits. The alternatie forms forash ashg mul, and div are provided to\aid conflict with EAE register names

should thg be reeded.

The «pression irmark must be expressible in six bits, and the expressi@olimust be in the same segment as

", must not be external-undefined, must be less thdn &nd must be within 510 bytes of.” .

8.9 Floating-poinunit instructions
The following floating-point operations are defined, with syntax as indicated:

cfcc
setf
setd



Assembler Manual - 10

seti

setl

clrf fdst

negf  fdst

absf  fdst

tstf fsrc

movf  fsrc, freg (= Idf)
movf  freg,fdst (= stf)
movif src, freg (= Idcif)
movfi freg,dst (= stcfi)
movof fsrc, freg (= Idcdf)
movfo freg,fdst (= stcfd)
movie src, freg (= Idexp)
movei  freg,dst (= stexp)

addf  fsrc, freg
subf  fsrc, freg
mulf  fsrc, freg
divf fsrc, freg
cmpf  fsrc, freg
modf fsrc, freg

Idfps  src
stfps  dst
stst dst

fsrc, fdst and freg mean floating-point source, destination, and register regggctiTheir syntax is identical to that
for their non-floating counterparts, but note that only floating registers 0—3 canelge a

The names of seral of the operations ka been changed to bring out an analogy with certain fixed-point instruc-
tions. Theonly strange case imovf, which turns into eithestf or |df depending respeegsly on whether its first
operand is or is not a registaiarning: Idf sets the floating condition codesf does not.

9. Other symbols
9.1 ..

The symbol“..” i s therelocation counter Just before each assembledralis placed in the output stream, the-cur
rent value of this symbol is added to the word if the word refers it,adga or bss segment location. If the output
word is a pc-relatie address word which refers to an absolute location, the value.éfi's aubtracted.

Thus the value of . .” can be taken to mean the starting core location of the prograunix systems with reloca-
tion hardware, the initial value of.“” is Q.

The value of“..” may be changed by assignment. Such a course of action is sometimes nelogisdayconse-
guences should be carefully thought out. It is particularly ticklish to changemidway in an assembly or to do
so in a program which will be treated by the loaddrich has its own notions of.“” .

9.2 Systentalls

The following absolute symbols may be used to code calls taMiesystem (see th&ysinstruction abwee).

break nice
chdir open
chmod read
chown seek
close setuid
creat signal
exec stat
exit stime
fork stty
fstat tell
getuid time

gtty umount



Assembler Manual - 11

link unlink
makdir wait
mdate write
mount

Warning: thewait system call is not the same as Wt instruction, which is not defined in the assembler.

10. Diagnostics

When an input file cannot be read, its name ¥o#id by a question mark is typed and assembly ceases. When syn-
tactic or semantic errors oc¢ar sngle-character diagnostic is typed out together with the line number and the file
name in which it occurred. Errors in pass 1 cause cancellation of pass 2. The possible errors are:

) parentheses error

] parentheses error

> string not terminated properly
* indirection () used illegdly
illegd assignment to *”

error in address

branch address is odd or too remote
error in expression

error in local (f'’ or “'‘b") type symbol
gabage (unknown) character

end of file inside arif

multiply defined symbol as label

word quantity assembled at odd address
phase error—"" different in pass 1 and 2
relocation error

undefined symbol

syntax error

XCXxUvoZI -~ oOmmm>-



