Programming in C — A Tutorial
Brian W. Kernighan

Bell Laboratories, Murray Hill, N. J.

1. Introduction

C is a @mputer languagevailable on theccosanduNIx operating systems at Murray Hill and (in
preliminary form) on OS/360 at HolmdeC lets you write your programs clearly and simply — it has de-
cent control flav facilities so your code can be read straight down the page, without labelsST@'SGiD
lets you write code that is compact without being too cryptic; it encourages modularity and good program
organization; and it provides good data-structuring facilities.

This memorandum is a tutorial to nealkearning C as painless as possible. The first part concentrates
on the central features of C; the second part discusses those parts of the language which are useful (usually
for getting more efficient and smaller code) but which are not necessary fomtlisare This isnota ref-
erence manual. Details and special cases will be skipped ruthkssiyo attempt will be made to e
eveay language featureThe order of presentation is hopefully pedagogical instead of logical. Users who
would like the full story should consult th@ Refeence Manuaby D. M. Ritchie [1], which should be read
for details agway. Runtime support is described in [2] and [3]; you willved@ read one of these to learn
how to compile and run a C program.

We will assume that you are familiar with the mysteries of creating filesetiting, and the li& in
the operating system you run on, and that yoe f[ppogrammed in some language before.

2. ASimple C Program

main() {
printf("hello, world");
}

A C program consists of one or mdienctions,which are similar to the functions and subroutines of
a Fortran program or the procedures of PL/l, and perhaps some external data defintiionss such a
function, and in fact all C programs mustvbéanai n. Execution of the program begins at the first state-
ment ofmai n. mai n will usually invoke aher functions to perform its job, some coming from the same
program, and others from libraries.

One method of communicating data between functions isdwmants. Thearentheses folleing
the function name surround the argument list; meren is a function of no arguments, indicated by (
The {} enclose the statements of the functidndividual statements end with a semicolart bre other
wise free-format.

printf is a library function which will format and print output on the terminal (unless some other
destination is specified). In this case it prints

C Tutorial -2

hello, world

A function is ivoked by raming it, followed by a list of arguments in parentheses. Theredsmnostate-
ment as in Fortran @i

3. AWorking C Program; Variables; Types and Type Declarations
Here’s a higger program that adds three integers and prints their sum.

main() {
int a, b, ¢, sum
a = 1; b = 2; c = 3
sum = a + b + c;
printf("sumis %", sum;

}

Arithmetic and the assignment statements are much the same as in Fortran (except for the semi-
colons) orrLi. The format of C programs is quite fredle can put seeral statements on a line if weamt,
or we can split a statement amongesal lines if it seems desirable. The split may be betwegrofthe
operators or variablespybnot in the middle of a name or operatdks a natter of style, spaces, tabs, and
newlines should be used freely to enhance readability.

C has four fundamentaypesof variables:

i nt integer (PDP-11: 16 bits; H6070: 36 bits; IBM360: 32 hits)
char one byte character (PDP-11, IBM360: 8 bits; H6070: 9 hits)
fl oat single-precision floating point

doubl e double-precision floating point

There are alsarrays andstructuresof these basic typegpintersto them andunctionsthat return them,
all of which we will meet shortly.

All variables in a C program must be declared, although this can sometimes be done implicitly by
contt. Declarationsnust precedexecutable statements. The declaration

int a, b, ¢, sum
declares, b, ¢, andsumto be integers.

Variable names he e to eight characters, chosen from A-Z, a-z, 0-9, amdd start with a non-
digit. Stylistically, it's much better to use only a single case ane dinctions and externalaviables
names that are unique in the first six characters. (Function and external variable names areausrg by v
assemblers, some of which are limited in the size and case of identifierathbandle.)Furthermore,
keywords and library functions may only be recognized in one case.

4. Constants

We havealready seen decimal integer constants in theique example _ 1, 2, and 3. Since C is of-
ten used for system programming and bit-manipulation, octal numbers are an important part of the lan-
guage. InC, ary number that begins with 0 (zero!) is an octal integer (and hencehza@ary 8's or 9's
in it). Thus 0777 is an octal constant, with decimal value 511.

A ‘“‘character’is one byte (an inherently machine-dependent concépst often this is xpressed
as acharacter constantywhich is one character enclosed in single quokéswever, it may be ag quantity
that fits in a byte, as inl ags below:

char quest, newline, flags;
quest = '?%

newine = '\n;

flags = 077;

C Tutorial -3-

The sequence \n’ is C notation fonéwline charactel,; which, when printed, skips the terminal to
the beginning of the next line. Notice that ‘\n’ represents only a single charabee are sesral other
“escapes’like \n’ for representing hard-to-get orvieible characters, such as ‘\t' for tab, ‘b’ for
backspace, \0’ for end of file, and ‘\\' for the backslash itself.

f 1 oat anddoubl e constants are discussed in section 26.

5. Simplel/O _ getchar, putchar, printf

main() {
char c;
¢ = getchar();
put char(c);

}

get char andput char are the basic I/O library functions in @et char fetches one character
from the standard input (usually the terminal) each time it is called, and returns that charactealag the v
of the function. When it reaches the end of whatéle it is reading, thereafter it returns the character rep-
resented by \0’ (asciiuL, which has value zerole will see hav to use this very shortly.

put char puts one character out on the standard output (usually the terminal) each time it is called.
So the program albe reads one character and writes it back dy.itself, this isnt very interesting, bt
obsenre that if we put a loop around this, and add a test for end of file, wee dh@mplete program for
copying one file to another.

printf is a more complicated function for producing formatted outjde. will talk about only the
simplest use of itBasically,pri nt f uses its first argument as formatting information, arydsancessie
arguments as variables to be output. Thus

printf ("hello, world\n");

is the simplest use _ the string “hellogrd\n” is printed out. No formatting information, no variables, so
the string is dumped ouktbatim. Thenewline is necessary to put this out on a line by itself. (The con-
struction

“hello, world\n"
is really an array ofhar s. More about this shortly.)
More complicated, i umis 6,
printf ("sumis %\n", sum;
prints
sumis 6

Within the first argument qfr i nt f, the characters%d” signify that the next argument in thegament
list is to be printed as a base 10 number.

Other useful formatting commands aféc’ to print out a single charactel%s” to print out an en-
tire string, and “%d’to print a number as octal instead of decimal (no leading z&w)example,

n = 511,
printf ("What is the value of %l in octal?", n);
printf (" %! %l decimal is % octal\n", "Right", n, n);

prints
What is the value of 511 in octal? Right! 511 decimal is 777
oct al

Notice that there is no newline at the end of the first output Bweccessie alls topri ntf (and/or
put char, for that matter) simply put out characters. No newlines are printed unless you ask for them.
Similarly, on input, characters are read one at a time as you ask for them. Each line is generally terminated

C Tutorial -4 -

by a newline (\n), but there is otherwise no concept of record.

6. If; relational operators; compound statements
The basic conditional-testing statement in C isi thestatement:

¢ = getchar();
if(c ="
printf("why did you type a question mark?\n");
The simplest form of f is

if (expression) statenent

The condition to be tested isyaexpression enclosed in parentheses. It is followed by a statement.
The expression isveluated, and if its value is non-zero, the statemenkésuted. Theres an gtional
el se clause, to be described soon.

The character sequence ‘==

is one of the relational operators in C; here is the complete set:

== equal to (. EQ. to Fortraners)
I = not equal to

> greater than
< | ess than
>= greater than or equal to
<= | ess than or equal to
The value of ‘ expression rel ati on expression’’ is 1 if the relation is true, and O if
false. Dont forget that the equality test is ‘=="; a single ‘=" causes an assignment, not a testaaiadhlin
leads to disaster.
Tests can be combined with the operatog®’ (AND), ‘ II' (OR),and‘ !’ (NOT). For example, we
can test whether a character is blank or tab or newline with
if(c==" "1 c==\t" Il c==\n")

C guarantees that&&' and’ II' are ealuated left to right _ we shall soon see cases where this matters.

One of the nice things about C is that ¢hieat ement part of ani f can be made arbitrarily compli-
cated by enclosing a set of statements inAk a simple example, suppose we want to ensuratisabig-
ger thanb, as part of a sort routine. The interchanga @ndb takes three statements in C, grouped to-
gether by {}:

if (a < b) {
t = a;
a = b;
b =t;
}

As a general rule in C, anywhere you can use a simple statement, you cap cm@@ound state-
ment, which is just a number of simple or compound ones enclosed in {}. There is no semicolon after the }
of a compound statement, but thexa ssmicolon after the last non-compound statement inside the {}.

The ability to replace single statements by comees at will is one feature that neskC much
more pleasant to use thaarffan. Logic(like the exchange in the previous example) which would require
several GOTO's and labels in Fortran can and should be done in C withogtuwsimg compound state-
ments.

7. While Statement; Assignment within an Expression; Null Statement

The basic looping mechanism in C is W@ | e statement. Herg’a pogram that copies its input to
its output a character at a time. Remember that \0’ marks the end of file.

main() {

C Tutori al -5 -

char c;
while((c=getchar()) !'= "\0")
put char(c);
}

Thewhi | e statement is a loop, whose general form is
whi l e (expression) statenent
Its meaning is

(a) evaluate the expression
(b) if its value is true (i.e., not zero)
do the statenment, and go back to (a)

Because thexpression is tested before the statemenkésiwged, the statement part can beceted zero
times, which is often desirablés in thei f statement, the expression and the statement can both be arbi-
trarily complicated, although we V&n’'t seen that yet. Our example gets the charaassigns it tac, and
then tests if is a \0”. If itis not a \0’, the statement part of thhi | e is executed, printing the character
The whi | e then repeats. When the input character is finally a \0’wihiel e terminates, and so does
mai n.

Notice that we used an assignment statement

c = getchar()

within an epression. Thigs a handy notational shortcut which often produces clearer ¢buéact it is

often the only way to write the code cleanlys an &ercise, re-write the file-cgpwithout using an assign-

ment inside anxpression.) ltworks because an assignment statement has a value, jugtabarxpres-

sion does. Its value is the value of the right hand side. This also implies that we can use multiple assign-
ments like

X =y =12z = 0;
Evaluation goes from right to left.

By the way, the extra parentheses in the assignment statement within the conditional were really nec-
essary: if we had said

c = getchar() !'= "0
¢ would be set to 0 or 1 depending on whether the character fetched was an end of file or not. This is be-

cause in the absence of parentheses the assignment operatorvaluated after the relational operator
‘I=’. When in doubt, or gen if not, parenthesize.

Sinceput char (¢) returnsc as its function &lue, we could also cgpthe input to the output by
nesting the calls tget char andput char :

main() {
whil e(putchar(getchar()) !'= \0") ;
}

What statement is being repeated? None, or technitiadiyull statement, because all the work is really
done within the test part of thwhi | e. This version is slightly different from the previous one, because
the final \0’ is copied to the output before we decide to stop.

8. Arithmetic

The arithmetic operators are the usual '+, **', and ‘/’ (truncating integer diision if the operands
are both nt), and the remainder or mod operator ‘%’:

X = a%b;

setsx to the remainder aftex is divided byb (i.e.,a mod b) . The results are machine dependent unless

C Tutorial -6 -

a andb are both positie.

In arithmetic,char variables can usually be treateddiknt variables. Arithmeticon characters is
quite lggd, and often makes sense:

c = c + IAI _ Ial;
corverts a single lower case ascii character stored in upper case, making use of the fact that corre-
sponding ascii letters are a fixed distance apart. The rulrgog this arithmetic is that athar s are
converted toi nt before the arithmetic is don®eware that comersion may inolve dgn-extension __ if the

leftmost bit of a character is 1, the resulting integer might betime. (This doesrt’ happen with genuine
characters on grcurrent machine.)

So to comert a file into lower case:

main() {
char c;
while((c=getchar()) !'= "\0")
if('A<=c && c<='Z'")
put char (c+'a'-'A);
el se
put char(c);
}

Characters heae dfferent sizes on different machineBurther this code wn’t work on an IBM machine,
because the letters in the ebcdic alphabet are not contiguous.

9. ElseClause; Conditional Expressions
We just used arl se after ani f . The most general form off is

if (expression) statenentl else statenent2
theel se part is optional, but often useful. The canonical examplexs&tdhe minimum of andb:

if (a < b)
X = a;
el se
X = b;

Obsenre that theres a €micolon aftex=a.

C provides an alternate form of conditional which is often more concise. It is callédahditional
expression’because it is a conditional which actually has a value and can be used anywhgnessian
can. Thevalue of

a<b ? a : b;
isaif ais less thai; itis b otherwise. lrgeneral, the form
exprl ? expr2 : expr3
means‘evaluateexpr 1. If it is not zero, the value of the whole thingeispr 2; otherwise the value is
expr3. '’
To stx to the minimum of andb, then:
x = (a<b ? a : b);
The parentheses arénecessary becaus@: ’ is evaluated before ‘=", but safety first.
Going a step furthewe ould write the loop in the lower-case program as

while((c=getchar()) !'= "\0")
putchar(('A<=c && c<='Z") ? c-'A+a" : c);

C Tutorial -7-

| f' s andel se’ s can be used to construct logic that branches onevefadevays and then rejoins,
a mmmon programming structure, in this way:

if(...)
{. ..}
else if(...)
..}
else if(...)
-}
el se
{. ..}

The conditions are tested in ordand exactly one block isxecuted _ either the first one whdsk is satis-
fied, or the one for the last se. When this block is finished, the next statemesteated is the one af-
ter the lasel se. If no action is to be taken for the “defaultase, omit the lagl se.

For example, to count letters, digits and others in a file, we could write

main() {
int let, dig, other, c;
let = dig = other = O0;
while((c=getchar()) !'= "\0")
if(('A<=c && c<='Z") Il ('a'<=c && c<='7")) +tlet;
else if('O'<=c && c<='9") ++dig;
el se ++ot her;
printf("%l letters, % digits, %l others\n", let, dig, other);

}

The ‘++’ operator means “increment by 1”; we will get to it in the next section.

10. Increment and Decrement Operators

In addition to the usual, C also has tw cther interesting unary operators, ‘++' (increment) and
‘——" (decrement). Supposee want to count the lines in a file.

main() {
int c,n;
n = 0;
while((c=getchar()) !'= "\0")
if(¢ = "'\n")
++n;

printf("%l |ines\n", n);
}

++n is equvalent ton=n+1 but clearer particularly whenn is a complicated pression. ‘++'and =-
can be applied only tont ' s andchar’ s (andpoi nt er s which we haen’t got to yet).

The unusual feature of ‘++' and+' is that theg can be used either before or afteraaiable. The
value of +4k is the \alue ofk afterit has been incremented. The valuekef+ isk beforeit is increment-
ed. Supposk is 5. Then

X = ++k;
incrementk to 6 and then setsto the resulting value, i.e., to 6. But
X = k++;

first setsx to to 5, andhenincrementsk to 6. The incrementing effect of k+andk++ is the same,ui
their values are respeatly 5 and 6. We dall soon see examples where both of these uses are important.

C Tutorial -8-

11. Arrays

In C, as in Fortran or PL/I, it is possible to raakrays whose elements are basic types. Thus we can
malke an aray of 10 integers with the declaration

int x[10];

The square brackets meanbscripting;parentheses are used only for function referenéemy indexes
begin atzero,so the elements of are

x[0], x[1], x[2], . .., X[9]
If an array has elements, the largest subscriphisl.

Multiple-dimension arrays are prided, though not much used aawo dmensions. Theleclara-
tion and use look like

int nane[10] [20];
n = name[i+] [1] + nanme[k] [2];

Subscripts can be arbitrary iglr expressions. Multi-dimensioarrays are stored bywo(opposite to Br-
tran), so the rightmost subscript varies fastestre has 10 rows and 20 columns.

Here is a program which reads a line, stores it infieh) and prints its length (excluding thewine
at the end).

main() {
int n, c;
char |ine[100];
n = 0,
while((c=getchar()) !'= \n") {
if(n < 100)
line[n] = c;
n++;

}
printf("length = %\n", n);

}

As a more complicated problem, suppose vemtwo print the count for each line in the input, still
storing the first 100 characters of each lifiey it as an &ercise before looking at the solution:

main() {
int n, c; char |ine[100];
n = 0,
while((c=getchar()) !'= "\0")
if(c == "1\n) {
printf("%l0, n);
n = 0,
}
el se {
if(n <100) line[n] = c;
n++;
}
}

12. CharacterArrays; Strings

Text is usually kept as an array of characters, as we did witlhe[] in the example ab@. By
convention in C, the last character in a character array should be a \O’ because most programs that manipu-
late character arrays expect For example,pri nt f uses the \0’ to detect the end of a character array

C Tutorial -9-

when printing it out with a ‘%s’.
We @an copy a character arrag into anothet like this:
i = 0;
while((t[i]=s[i]) !'= "\0")
i ++;

Most of the time we hee o put in our own \O’ at the end of a string; if we want to print the line with
printf, it's necessaryThis code prints the character count before the line:

main() {
int n;
char |ine[100];
n = 0;
while((line[n++]=getchar()) !'= \n");
line[n] = "\0O,

printf("%l:\t%", n, line);
}

Here we incremem in the subscript itself, but only after the yimus value has been used. The character
is read, placed ihi ne[n], and only them is incremented.

There is one place and one place only where C puts in the \O’ at the end of a character array for you,
and that is in the construction

"stuff between doubl e quotes”

The compiler puts a \O’ at the end automaticallext enclosed in double quotes is calledstaing; its
properties are precisely those of an (initialized) array of characters.

13. For Statement

Thef or statement is a somewhat generalisbd | e that lets us put the initialization and increment
parts of a loop into a single statement along with the test. The general fornf of tie

for(initialization; expression; increnent)
st at enent

The meaning is exactly
initialization;
whil e(expression) {

st at enent
i ncrenent;
}
Thus, the following code does the same array esphe example in the previous section:
for(i=0; (t[i]l=s[i]) != "\Q; i++);
This slightly more ornate example adds up the elements of an array:
sum = O0;
for(i=0; i<n; i++)

sum = sum + array[i];

In thef or statement, the initialization can be left out if you want,the semicolon has to be there.
The increment is also optional. It et followed by a semicolonThe second clause, the test, works the
same way as in thehi | e: if the expression is true (not zero) do another loop, otherwise get on with the
next statement. As with thehi | e, thef or loop may be done zero times. If the expression is left out, it
is taken to be alays true, so

for(; ;)

C Tutorial -10 -

and
while(1)
are both infinite loops.

You might ask wly we wse af or since its so nuch like awhi I e. (You might also ask whwe
use awhi | e because...) Théor is usually preferable because gdps the code wheresitised and
sometimes eliminates the need for compound statements, as in this code that zeros a two-dimensional array:
for(i=0; i<n; i++)
for(j=0; j<m j++)
array[i][j] = O;

14. Functions;Comments

Suppose we want, as part of agkarprogram, to count the occurrences of the ascii characters in some
input text. Letus also map iligd characters (those with value>127 or <0) into one pile. Since this is pre-
sumably an isolated part of the program, good practice dictates making it a separate ftteriois. one
way:

main() {
int hist[129]; /% 128 legal chars + 1 illegal group =/

count (hist, 128); /% count the letters into hist =x/
printf(...); /% coments look like this; use them %/
. / « anywhere blanks, tabs or newlines could appear =x/

}

count (buf, size)
int size, buf[]; {

int i, c;
for(i=0; i<=size; i++)
buf[i] = O; /% set buf to zero %/
while((c=getchar()) !'= 0") { /% read til eof =/
if(¢c >sizell c <0)
c = size; [+ fix illegal input =%/
buf [c] ++;
}
return,

}

We havealready seen mgnexamples of calling a function, so let us concentrate am toodefineone.
Sincecount has tw arguments, we need to declare them, as shown, giving their types, and in the case of
buf , the fact that it is an arrayThe declarations of arguments lgetweerthe argument list and the open-

ing {". There is no need to specify the size of the atvay, for it is defined outside afount .

Ther et ur n statement simply says to go back to the calling routine. In fact, we corddamitted
it, since a return is implied at the end of a function.

What if we wvantedcount to return a value, say the number of characters rdd? et ur n state-
ment allows for this too:

int i, c, nchar;
nchar = 0;
while((c=getchar()) '= "0) {
if(¢ >sizell ¢c <0)
cC = size;
buf [c] ++;

nchar ++;

C Tutori al - 11 -

return(nchar);

Any expression can appear within the parenthestese is a function to compute the minimum obtinte-
gers:

mn(a, b)
int a, b; {
return(a < b ? a: b);
}
To ocopy a character arrgywe could write the function
strcopy(sl, s2) /% copies sl to s2 %/
char si[], s2[]; {
int i;
for(i = 0; (s2[i] = s1[i]) != "\0; i++);
}

As is often the case, all the work is done by the assignment statement embedded in the test part of the
for. Again, the declarations of thegamentss1 ands2 omit the sizes, because yhdon't matter to
strcopy. (Inthe section on pointers, we will see a more efficient way to do a strigg cop

There is a subtlety in function usage which can trap the unsuspeotimgnFprogrammerSmple
variables (not arrays) are passed in C by “call byue’, which means that the called function ivei a
copy of its arguments, and doeskhow their addresses. This makes it impossible to change the value of
one of the actual input arguments.

There are tw ways out of this dilemma. One is to neadpecial arrangements to pass to the function
the address of a variable instead of @kue. Theother is to ma& the variable a global or externalriable,
which is known to each function by its nam#&fe will discuss both possibilities in the nextwfeections.

15. Localand External Variables
If we say

f() 1

int x;

)
o) {

int x;

}

eachx is local to its own routine _ th& in f is unrelated to th& in g. (Local variables are also called
“automatic’) Furthermoreeach local variable in a routine appears only when the function is called, and
disappearavhen the function isxited. Localvariables hae ro memory from one call to the next and must

be explicitly initialized upon each entryThere is &t at i ¢ storage class for making local variables with
memory; we wort'discuss it.)

As opposed to localariablesexernal variablesare defined external to all functions, and are (poten-
tially) available to all functions. External storagevalys remains inxistence. © make variables gternal
we have © definethem external to all functions, and, wheewe want to use them, maladeclaration.

main() {
extern int nchar, hist[];

(lzolurllt ();

C Tutori al - 12 -

count() {
extern int nchar, hist[];

int i, c;
}
i nt hist[129]; /x space for histogram %/
i nt nchar; / * character count =/

Roughly speaking, anfunction that wishes to access an external variable must contaxt @n n decla-
ration for it. The declaration is the same as others, except for the aslgemkext er n. Furthermore,
there must somewhere beefinitionof the external variables external to all functions.

External variables can be initialized; yhare set to zero if not explicitly initializedln its simplest
form, initialization is done by putting the value (which must be a constant) after the definition:

i nt nchar O;
char flag 'f";
etc.

This is discussed further in a later section.

This ends our discussion of what might be called the central core ¥6@€now have enough to
write quite substantial C programs, and duld probably be a good idea if you paused long enough to do
so. Therest of this tutorial will describe some more ornate constructions, useful but not essential.

16. Pointers

A pointerin C is the address of somethinly.is a rare case indeed when we care what the specific
address itself is, but pointers are a quite common way to get at the contents of soriéihingary opera-
tor ‘&’ is used to produce the address of an object, if it has one. Thus

int a, b;
b = &a;
puts the address afintob. We @an't do much with it except print it or pass it to some other routine, be-

cause we han't given b the right kind of declarationBut if we declare thab is indeed aointerto an in-
teger we're in good shape:

int a, b, c;
b &a;
c * b;

b contains the address afand‘ ¢ = # b’ means to use the valuebiras an address, i.e., as a poinfBne
effect is that we get back the content@apfalbeit rather indirectly (It's dways the case thatx &’ is the
same ax if x has an address.)

The most frequent use of pointers in C is for walking efficiently along arrays. In fact, in the imple-
mentation of an arrayhe array name represents the address of the zeroth element of theoaywaycant
use it on the left side of axgression. (Bu cant change the address of something by assigning tdfit.)
we say

char xvy;
char x[100];

y is of type pointer to character (although it doeget point agwhere). W& can male y point to an ele-
ment ofx by either of

y = &[0];

y X,

C Tutorial -13 -

Sincex is the address of[0] this is legd and consistent.
Now ' %y’ givesx[0] . More importantly,

* (y+1) gives x[1]
* (y+i) gives x[i]
and the sequence
y = &[0];
y++;

leavesy pointing atx[1] .
Let's wise pointers in a functiohengt h that computes he long a character array ilRemember

that by comention all character arrays are terminated with a \0’. (And ifytlent, this program will
blow up inevitably) Theold way:

| engt h('s)
char s[]; {
int n;
for(n=0; s[n] !'= "\0;)
n++;
return(n);

}
Rewriting with pointers gies

I engt h(s)
char xs; {
int n;
for(n=0; xs != "\0'; s++)
n++;
return(n);

}

You can nav see wly we haveto say what kind of thing points to _ if we'e to increment it witls ++ we
have o increment it by the right amount.

The pointer version is more efficient (this is almogtagk true) but een more compact is
for(n=0; =*xs++ I= \0; n++);
The* x s’ returns a character; ther+ increments the pointer so we'll get the next charactet tirae

around. Asyou can see, as we nmakings more efficient, we also nakem less clearBut‘ x s++' is
an idiom so common that youvan know it.

Going a step furthehere’s aur functionst r copy that copies a character arrmyo anothet .

strcopy(s,t)
char xs, =*t; {
while(xt++ = %S++);

}

We haveomitted the test against \O’, because \0’ is identically zero; you will often see the codayhis w
(You musthave a pace after the ‘="; see section 25.)

For arguments to a function, and there grithe declarations

char s[];
char xs;

are equidlent _ a pointer to a type, or an array of unspecified size of that type, are the same thing.

If this all seems mysterious, gpthese forms until thebecome second natur&ou don'’t often need
anything more complicated.

C Tutorial -14 -

17. FunctionArguments

Look back at the functiost r copy in the previous sectionWe passed it tw gring names as gu-
ments, then proceeded to clobber both of them by incrementation.wSmhw we dort’lose the original
strings in the function that called r copy?

As we said before, C is a “call byalue’ language: when you mala unction call like f (x) , the
valueof x is passed, not its address. So trere’'way toalter x from insidef . If x is an array(char
X[10]) this isnt a problem, becausg is an address gway, and you're not trying to change it, just what
it addresses. This is wist r copy works as it does. And & rvenient not to hee t worry about mak-
ing temporary copies of the input arguments.

But what ifx is a scalar and you do want to change it? In that case, yeudhgass theaddressof x
tof, and then use it as a pointérhus for example, to interchangeatimtegers, we must write

flip(x, v)
int xx, *xy; {
int tenp;
temp = xX;
*X = kY,
*y = tenp;
}

and to calf | i p, we hare © pass the addresses of the variables:
flip (&, &b);

18. Multiple Levels of Pointers; Program Arguments

When a C program is called, thegaments on the command line are madaable to the main pro-
gram as an argument couatgc and an array of character stringsgv containing the ajuments. Ma-
nipulating these arguments is one of the most common uses of multigie d¢ pointers (pointer to
pointer to .7.). By corvention, ar gc is greater than zero; the first argumentdirgv[0]) is the com-
mand name itself.

Here is a program that simply echoes its arguments.
mai n(argc, argv)

int argc;
char xxargv; {
int i;
for(i=1; i < argc; i++)

printf("% ", argv[i]);
put char ('\ n");
}

Step by stepmai n is called with tvo aguments, the argument count and the arraygiiraents.ar gv is

a pointer to an arrgywhose individual elements are pointers to arrays of characters. The zeroth argument is
the name of the command itself, so we start to print with the first argument, untél wieted them all.
Eachar gv[i] is a character arrago we e a %’ intheprintf.

You will sometimes see the declarationasfgv written as
char xargv[1];

which is equialent. Butwe cant usechar argv[][], because both dimensions aegiable and there
would be no way to figure out twabig the array is.

Here’s a igger example usingr gc andar gv. A common comention in C programs is that if the
first argument is-, it indicates a flag of some sorEor example, suppose we want a program to be
callable as

prog -abc argl arg2

C Tutorial -15 -

where the+" argument is optional; if it is present, it may be followed by emmbination of a, b, and c.

mai n(argc, argv)
int argc;
char xxargv; {

aflag = bflag = cflag = 0;

if(argc > 1 && argv[1][0] == "-") {
for(i=1; (c=argv[1][i]) != "0 i++)
if(c==a')
af | ag++;
else if(c=='b")
bf | ag++;
else if(c==c')
cfl ag++;
el se
printf("%?\n", c);
—-argc;
++ar gv;

There are seeral things worth noticing about this code. First, there is a real need for the left-to-right
evduation that && provides; we dohwant to look atar gv[1] unless we knw it's there. Secondhe
statements

—--argc;
++ar gv;

let us march along thegarment list by one position, so we can skiprdhe flag argument as if it hadvee
existed _ the rest of the program is independent of whether or not thsra flag ajument. Thisonly
works becausar gv is a pointer which can be incremented.

19. TheSwitch Statement; Break; Continue

Theswi t ch statement can be used to replace the muti-test we used in the lastaenple. When
the tests are likthis:

if(c="3) ...
else if(¢ == 'b")
else if(¢ == "'c")
el se

testing a value against a seriescofistantsthe switch statement is often clearer and usuallgsdietter
code. Usét like this:

switch(¢) {

case 'a":
af | ag++;
br eak;
case 'b":
bf | ag++;
br eak;
case 'c":
cfl ag++;
br eak;
defaul t:
printf("%?\n", c);

C Tutori al - 16 -

br eak;
}

Thecase statements label the various actions vatudef aul t gets done if none of the other cases are
satisfied. (Adef aul t is optional; if it isnt there, and none of the cases match, you just fall out the bot-
tom.)

The br eak statement in this example iswmelt is there because the cases are just labels, and after
you do one of them, yofall throughto the next unless you taloome explicit action to escape. This is a
mixed blessing.On the positie de, you can ha multiple cases on a single statement; we might want to
allow both upper and lower case letters in our flag field, so we could say

case 'a'": case 'A’:
case 'b'": case 'B'"
etc.

But what if we just vant to get out after doingase ‘ a’ ? We oould get out of @ase of theswi t ch
with a label and got o, but this is really ugly Thebr eak statement lets us exit without eithgot o or
label.

switch(¢) {

case 'a':
af | ag++;
br eak;
case 'b":
bf | ag++;
br eak;
}

/% the break statenents get us here directly =x/

The br eak statement also works ifhor andwhi | e statements _ it causes an immediate exit from the
loop.

Thecont i nue statement wrksonly insidef or’ s andwhi | €’ s; it causes the ¢ iteration of
the loop to be started. This means it goes to the increment partfafrttend the test part of thwhi | e.
We muld hare ised acont i nue in our example to get on with thextédteration of the or, but it seems
clearer to user eak instead.

20. Structures

The main use of structures is to lump together collections of dispamagédle types, so thecan
conveniently be treated as a uniEor example, if we were writing a compiler or assembleg mght need
for each identifier information lkits name (a character array), its source line number (agemtesome
type information (a charactgrerhaps), and probably a usage count (another integer).

char id[10];
i nt l'ine;
char type;

i nt usage;

We @n male a d$ructure out of this quite easilyVe first tell C what the structure will look like, that
is, what kinds of things it contains; after that we can actually resemage for it, either in the same state-
ment or separatelyThe simplest thing is to define it and allocate storage all at once:

struct {
char id[10];
i nt line;
char type;

i nt usage;

C Tutori al - 17 -

} sym

This definesymto be a structure with the specified shapk; |1 i ne, t ype andusage aremem-
bersof the structure. The way we refer toygrarticular member of the structure is

structure-name . nenber
asin
sym type = 077,
if(sym usage == 0)
while(sym id[j++)
etc.

Although the names of structure membergenstand alone, thestill have © be wique _ there cahbe
anotheli d orusage in some other structure.

So far we heen’t gained much. The advantages of structures start to come whenvevatags of
structures, or when weamt to pass complicated data layouts between functions. Suppose we wanted to
malke a ymbol table for up to 100 identifier$Ve muld extend our definitions like

char id[100][10];
i nt i ne[100];
char type[100];

i nt usage[100] ;

but a dructure lets us rearrange this spread-out information so all the data about a single identifer is collect-
ed into one lump:

struct {
char id[10];
i nt line;
char type;
i nt usage;
} syn{100];

This malessyman array of structures; each array element has the specified d@apeve can refer to
members as

synfi]. usage++; /% increment usage of i-th identifier =%/
for(j=0; syn{i].id[j++ !'= "\0";)
etc.
Thus to print a list of all identifiers thatyen't been used, together with their line number,

for(i=0; i<nsym i++)
if(synfi]. usage == 0)
printf("%\t%\n", syn{fi]. line, synfi]. id);

Suppose we o want to write a functioh ookup(nane) which will tell us if name already &ists
in sym by giving its index, or that it doegnby returning a-1. We can't pass a structure to a function di-
rectly _ we hge b dther define it externallyor pass a pointer to it. Let'try the first way first.

i nt nsym O; /% current length of synmbol table x/
struct {

char id[10];

i nt line;

char type;

i nt usage;
} syn{100]; /% synbol table «/

main() {

C Tutori al - 18 -

if((index = |ookup(newnane)) >= 0)

synii ndex] . usage++; /% already there ... «/
el se

i nstal |l (newname, new ine, newtype);

}

| ookup('s)
char xs; {

int i;

extern struct {
char id[10];
i nt line;
char type
i nt usage;

} osynl];

for(i=0; i<nsym i++)
if(conpar(s, syni].id) > 0)

return(i);
return(-1);

}

conpar (s1, s2) /% return 1 if sl==s2, 0 otherw se */
char xsl1, %xs2; {
while(%sl++ == %82)
if(%*s2++ == "\0")
return(l);
return(0);

}

The declaration of the structure limokup isn’t needed if the external definition precedes its use in the
same source file, as we shall see in a moment.

Now what if we want to use pointers?

struct symtag {

char id[10];
i nt line;
char type;

i nt usage;
} syn{100], =xpsym

psym = &syni0]; /%« or p = sym «x/
This malespsyma pointer to our kind of structure (the symbol table), then initializes it to point to the first
element obym

Notice that we added something after therdvwst ruct : a “tag” calledsynt ag. This puts a
name on our structure definition so we can refer to it later without repeating the defitisamt neces-
sary but useful. In fact we couldveasid

struct symag {
structure definition
b
which wouldnt haveassigned anstorage at all, and then said
st ruct synt ag syni 100] ;

st ruct synt ag * psym

C Tutorial -19 -

which would define the array and the point€his could be condensed furthtr

st ruct synt ag synf 100], *psym

The way we actually refer to an member of a structure by a pointee ikibk
ptr —> structure-nenber

The symbol ~>" means we're pointing at a member of a structure; is only used in that corté ptr is
a pointer to the (base of) a structure that contains the structure mefttexpressionpt r —=>st r uc-

t ur e- menber refers to the indicated member of the pointed-to structliteis we hae wnstructions
like:

psym->type = 1;
psym—>i d[0] = 'a’;

and so on.

For more complicated pointer expressionss wise to use parentheses to makdear who goes with
what. For example,

struct { int x, xy; } *%p;

p—>Xx++i ncrenents x

++p—>xso does this!

(++p) —=>x increnents p before getting x

* p—>y++ uses y as a pointer, then increnments it
*(p—>y)++ so does this

*(p++)—>y uses y as a pointer, then increnments p

The way to remember these is that . (dot),() and[] bind very tightly An expression ikolving
one of these is treated as a umit>x, a[i], y. x andf (b) are names exactly abc is.

If p is a pointer to a structure,yaerithmetic onp takes into account the acutal size of the structure.
For instancep++ incrementy by the correct amount to get the next element of the array of structures.
But dont assume that the size of a structure is the sum of the sizes of its members _ because of alignments
of different sized objects, there may be “holé@sa structure.

Enough theoryHere is the lookup example, this time with pointers.

struct symtag {

char id[10];
i nt line;
char type;
i nt usage;
} syn{100];
main() {

struct syntag =*|ookup():
struct syntag xpsym

if((psym = | ookup(newnane))) /%« non-zero pointer =x/
psym —> usage++; /« means already there %/
el se
i nstal |l (newnane, newline, newtype);

}

struct synmtag =l ookup(s)
char xs; {
struct syntag =xp;
for(p=sym p < &syn{nsynj; p++)
if(conpar(s, p—>id) > 0)
return(p);

C Tutori al - 20 -

return(0);
}
The functionconpar doesnt change: p—>i d’ refers to a string.

In mai n we test the pointer returned bpokup against zero, relying on thadét that a pointer is by
definition never zero when it really points at something. The other pointer manipulations are trivial.

The only complexity is the set of lines like
struct synmtag =!|ookup();

This brings us to an area that we will treat only hurriedly _ the question of function §pd, al of our
functions hae returned integers (or characters, which are much the saiftegt do we do when the func-

tion returns something else, dila pinter to a structure? The rule is thay &anction that doeshieturn an

i nt has to say explicitly what it does return. The type information goes before the function name (which
can mak the name hard to see). Examples:

char f(a)
int a; {
}
int xg() { ... }
struct symag =I|ookup(s) char xs; { ... }

The functionf returns a characteg returns a pointer to an irger, and | ookup returns a pointer to a
structure that looks liksynt ag. And if we're going to use one of these functions, weehta make a
declaration where we use it, as we didrisi n above.

Notice th parallelism between the declarations

struct syntag =l ookup();
struct syntag xpsym

In effect, this says thdtookup() andpsymare both used the same way _ as a pointer to a strcture _
even though one is a variable and the other is a function.

21. Initialization of Variables

An external variable may be initialized at compile time by feifg its name with an initializingal-
ue when it is defined. The initializing value has to be something wladge i8 known at compile time,
like a onstant.

i nt X 0; /% "0" could be any constant =x/
i nt a 'a’;
char flag 0177,
i nt * P &y[1]; /% p now points to y[1] =/
An external array can be initialized by following its name with a list of initializations enclosed in braces:
i nt x[4] {0,1,2,3}; [makes x[i] =i =*/
i nt v[1 {0,1,2,3}; /|« makes y big enough for 4 values x/

char *xmsg "syntax error\n"; /% braces unnecessary here x/
char xkeyword[]{

"ifr,

"el se",

“for",

"whil e",

"break",

“continue",

0

C Tutori al - 21 -

1
This last one is very useful _ it megkeywor d an array of pointers to character strings, with a zero at the

end so we can identify the last element eaglysimple lookup routine could scan this until it either finds a
match or encounters a zereylword pointer:

| ookup(str) /% search for str in keyword[] =*/
char xstr; {

int i,j,r;

for(i=0; keyword[i] !'= 0; i++) {
for(j=0; (r=keyword[i][j]) == str[j] && r != "\0'; j++);
if(r = str[j])

return(i);
}

return(-1);

}

Sorry _ neither local variables nor structures can be initialized.

22. ScopeRules: Who Knows About What

A complete C program need not be compiled all at once; the soutas the program may beshkt
in several files, and previously compiled routines may be loaded from libraHea: do we arange that
data gets passed from one routine to anothe?rave already seen o to use function arguments and
values, so let us talk about external dafdarning: the vordsdeclarationanddefinitionare used precisely
in this section; dom'treat them as the same thing.

A major shortcut exists for makingxt er n declarations. Ithe definition of a variable appedrs-
foreits use in some function, rext er n declaration is needed within the function. Thus, if a file contains

fac) { ...}

int foo;

f20) { ... foo =1; ... }
f3() { ... if (foo) ... }

no declaration of oo is needed in eithdr2 or orf 3, because the external definitionfaio appears be-
fore them. But iff 1 wants to usd oo, it has to contain the declaration

F1() {

extern int foo;

}

This is true also of anfunction that exists on another file _ if iamtsf 0o it has to use aaxt ern
declaration for it. (If somewhere there isext er n declaration for something, there must algentually
be an external definition of it, or you'll get an “undefined synilmgssage.)

There are some hidden pitfalls ixternal declarations and definitions if you use multiple source files.
To avoid them, first, define and initialize each external variable only once in the entire set of files:
i nt foo 0;

You can get avay with multiple external definitions oaNix, but not on Gcos,so dont ask for trouble.

Multiple initializations are illgd everywhere. Secondt the beginning of anfile that contains functions
needing a variable whose definition is in some other file, put iexamer n declaration, outside of gn

function:

extern i nt f oo;

f1() { ... }

etc.

C Tutori al - 22 -

The#i ncl ude compiler control line, to be discussed shoidys you mak a sngle copy of the &-
ternal declarations for a program and then stick them into each of the source files making up the program.

23. #define#include
C provides a very limited macro facilityyou can say
#def i ne nane sormet hi ng

and thereafter anywhermame’ appears as a tokerisomething’ will be substituted. This is particularly
useful in parametering the sizes of arrays:

#defi ne ARRAYSI ZE 100
i nt arr [ARRAYSI ZE] ;
while(i++ < ARRAYSIZE). . .

(now we can alter the entire program by changing onlydk€&i ne) or in setting up mysterious constants:

#def i ne SET 01

#def i ne | NTERRUPT 02 /% interrupt bit =*/
#defi ne ENABLED 04

if(x & (SET | INTERRUPT | ENABLED))

Now we have meaningful verds instead of mysterious constants. (The mysterious operators ‘&' (AND)
and I’ (OR) will be cavered in the next section.)t's an &cellent practice to write programs withoutyan
literal constants except #def i ne statements.

There are seral warnings abouttdef i ne. First, theres no £micolon at the end of #de-
fine; all the text from the name to the end of the line (except for comments) is taken to ‘bertiee *
thing”. Whenit's put into the text, blanks are placed arounddbod style typically makes the name in the
#def i ne upper case _ this makes parameters more visible. Definitions affect things only gftectire
and only within the file in which tlyeoccur Defines cart’be rested. Lastf there is a#def i ne in a file,
then the first character of the fileustbe a ‘#’, to signal the preprocessor that definitions exist.

The other control word known to C#8 ncl ude. To include one file in your source at compila-
tion time, say

#i ncl ude "fil enane"

This is useful for putting a lot of heity used data definitions arttef i ne statements at the beginning of
a file to be compiled. As witltdef i ne, the first line of a file containing# ncl ude has to begin with
a'#. And#i ncl ude cant be rested _ an included file cabntain anothe#i ncl ude.

24. Bit Operators
C has seeral operators for logical bit-operationsor example,

X = x & 0177;

forms the bit-wiseAND of X and 0177, déctively retaining only the last sen hits of x. Other operators
are

inclusive OR

(circumflex) exclusive OR

(tilde) 1's complement

! logical NOT

<< left shift (as in x<<2)

>> right shift (arithmeticon PDP-11; logical on H6070, IBM360)

C Tutorial -23-

25. AssignmentOperators

An unusual feature of C is that the normal binary operatoes+ik ‘—', etc. can be combined with
the assignment operator ‘=" to formmeassignment operatordzor example,

x =— 10;
uses the assignment operatot’to decremenk by 10, and
x =& 0177

forms theanD of x and 0177. This camntion is a useful notational shortcut, particularly ifs a compli-
cated &pression. Thelassic example is summing an array:

for(sunFi=0; i<n; i++)
sum =+ array[i];

But the spaces around the operator are critiEatlinstance,
x = -10;

setsx to —10, while
x == 10;

subtracts 10 frome. When no space is present,
x=-10;

also decreasesby 10. This is quite contrary to the experience of most programmers. In payticatitn
out for things like

C=% S++;

y=8&x[0] ;
both of which are almost certainly not what yoanted. Neer versions of various compilers are courte-
ous enough to warn you about the ambiguity.

Because all other operators in an expression\ataated before the assignment operatioe order
of evaluation should be watched carefully:

X = x<<y | z;
means “shiftx left y places, ther with z, and store irx. '’ But
X =<<y | z

means “shiftx left by y| z places”, which is rather different.

26. FloatingPoint

We've skipped wer floating point sodr, and the treatment here will be hast® has single and dou-
ble precision numbers (where the precision depends on the machine atF@mretample,

doubl e sum

float avg, y[10];

sum = 0. O;

for(i=0; i<n; i++)
sum =+ y[i];

avg = sumn;

forms the sum andvarage of the array .

All floating arithmetic is done in double precisiollixed mode arithmetic is da; if an arithmetic
operator in an expression has both operamus or char, the arithmetic done is inger, but if one
operand i nt or char and the other i§| oat or doubl e, both operands are cested todoubl e.
Thus ifi andj arei nt andx isf| oat,

(x+i)/]j converts i and j to float
X + ilj does i/j integer, then converts

C Tutori al - 24 -

Type cowersion may be made by assignment; for instance,

int m n;
float x, v;
m = Xx;
y = m
convertsx to integer (truncating ward zero), anch to floating point.

Floating constants are justdikhose in Fortran or PL/I, except that theenent letter is ‘e’ instead
of ‘E’. Thus:

pi = 3. 14159;
large = 1. 23456789¢e10;

printf will format floating point numbers:* %w. df '’ in the format string will print the corre-
sponding variable in a fiel digits wide, withd decimal placesAn e instead of arf will produce &po-
nential notation.

27. Horrors! goto’s and labels

C has agot o statement and labels, so you can branch about the way you used to. But most of the
time got 0’ s arent needed. (Har mary havewe used up to this point?Jhe code can almostvedys be
more clearly expressed byr/ whi |l e, i f/ el se, and compound statements.

One use ofgot 0’ s with some lIgitimacgy is in a pogram which contains a long loop, where a
whi | e(1) would be too gtended. Therou might write

mai nl oop:

got o nai nl oop;
Another use is to implementta eak out of more than onevel of f or orwhi |l e. goto’s can only
branch to labels within the same function.

28. Acknownledgements

| am indebted to a veritable host of readers who madigable criticisms on seral drafts of this tu-
torial. They ranged in experience from complete beginners througliadeémplementors of C compilers to
the C language designer himseeedless to sayhis is a wide enough spectrum of opinion that no one is
satisfied (including me); comments and suggestions are still welcome, so that some future version might be
improved.

Ref er ences

C is an atension of B, which was designed by D. M. Ritchie and K. L. Thompson [4]. The C lan-
guage design anaNix implementation are the work of D. M. Ritchi&#he Gcosversion was begun by A.
Sryder and B. A. Barres, and completed by S. C. Johnson and M. E. TheksM version is primarily
due to T G. Reterson, with the assistance of M. E. Lesk.

[1] D. M. Ritchie,C Reference ManualBell Labs, Jan. 1974.
[2] M. E. Lesk & B. A. BarresThe GCOS C LibraryBell Labs, Jan. 1974.

C Tutorial -25 .

[3] D. M. Ritchie & K. ThompsonUNIX Programmers Manual. 5th Edition, Bell Labs,
1974.

[4] S.C. Johnson & B. \WKernighan,The Pogramming Languge B Computer Sci-
ence Technical Report 8, Bell Labs, 1972.

