UNIX for Beginners

Brian W Kernighan

Bell Laboratories, Murray Hill, N. J.

In mary ways,UNix is the state of the art in com-
puter operating systems. From the useoint of view,
it is easy to learn and use, and presemtsofethe usual
impediments to getting the job done.

It is hard, havever, for the beginner to kmo
where to start, and hoto make the best use of thef
cilities available. Thepurpose of this introduction is to
point out high spots for meusers, so thecan get used
to the main ideas afNix and start making good use of
it quickly.

This paper is not an attempt to re-write thex
Programmers Manual; often the discussion of some-
thing is simply “read section x in the mantal. This
implies that you will need a cgmf the unix Program-
mer's Manual.) Rather it suggests in what order to read
the manual, and it collects together things that are stat-
ed only indirectly in the manual.

There are fig ®ctions:

1. GettingStarted: Hov to log in to auNix, how to
type, what to do about mistakes in typingwto
log out. Some of this is dependent on which
UNIX you log into (phone numbers, foxample)
and what terminal you use, so this section must
necessarily be supplemented by local informa-
tion.

2. Day-to-dayUse: Things you needvery day to
useunix effectively: generally useful commands;
the file system.

3. DocumentPreparation: Preparing manuscripts is
one of the most common uses fonx. This sec-
tion contains advice, but nottensve instruc-
tions on ag of the formatting programs.

4. Writing Programs:uNix is an excellent ehicle
for developing programs. This section talks
about some of the tools, but again is not a tutorial
in ary of the programming languages thatix
provides.

5. AunNix Reading List. An annotated bibliograph
of documents worth reading bywesers.

I. GETTING STARTED

Logging In

Most of the details about logging in are in the
manual section calledHow to Get Started’(pagesiv-
v in the 5th Edition). Here are a couple of extrarmv
ings.

You must hare auNix login name, which you can
get from whoeer administers your systemYou dso
need to knev the phone numberunix is capable of
dealing with a ariety of terminals: Terminet 300’s; Ex-
ecuport, Tl and similar portables; video terminals;
GSl's; and gen the venerable Teletype in itanous
forms. Butnote:unix will not handle IBM 2741 termi-
nals and their derétives (e.g., some Anderson-Jacob-
sons, Near). Furthermoreunix is strongly oriented
towards devices withower case If your terminal pro-
duces only upper case (e.g., model efype), life
will be so difficult that you should look for another-ter
minal.

Be sure to set the switches appropriately on your
device: speed (if i8 variable) to 30 characters per sec-
ond, lower case, full duplexyen parity, and ary others
that local wisdom advisesEstablish a connection us-
ing whateer magic is needed for your terminalinix
should type ‘login:’’ at you. If it types garbage, you
may be at the wrong speed; push the ‘break’ or ‘inter
rupt’ key ance. Ifthat fails to produce a login message,
consult a guru.

When you get albgin:’’ message, type your lo-
gin namein lower case Fadlow it by a RETURN if the
terminal has one. If a pasewd is required, you will be
asled for it, and (if possible) printing will be turned of
while you type it, again follwed by areTURN. (On
M37 Teletypes alays useNEWLINE Or LINEFEED in
place ofRETURN).

The culmination of your login efforts is a percent
sign ‘%’’. The percent sign means thatix is ready
to accept commands from the termin@fou may also
get a message of the day just before the percent sign or
a notification that you hae mail.)

Typing Commands
Once yowe sen the percent sign, you can type
commands, which are requests thaix do something.
Try typing
date

followed byRETURN. You should get back something
like

Sun Sep 22 10:52:29 EDT 1974
Don't forget theRETURN after the command, or nothing
will happen. If you think you're being ignored, type a

RETURN; something should happeWe won’t show the
carriage returns, but thdaveto be there.

Another command you might try isho, which
tells you &eryone who is currently logged in:

who
gives mething like

pip ttyf Sep 22 09:40
bwk ttyg Sep 22 09:48
mel ttyh Sep 22 09:58

The time is when the user logged in.

If you male a nistale typing the command
name,uNix will tell you. For example, if you type

whom
you will be told

whom: not found

Strange Terminal Behavior

Sometimes you can get into a state where your
terminal acts strangelyFor example, each letter may
be typed twice, or th&ETURN may not cause a line
feed. You can often fix this by logging out and logging
back in. Or you can read the description of the com-
mandstty in section | of the manual. This will also tell
you hav to get intelligent treatment of tab characters
(which are much used nNix) if your terminal doest’
have abs. Ifit does hae cmputersettable tabs, the
commandabs will set the stops correctly for you.

Mistakes in Typing

If you male a yping mistake, and see it before
the carriage return has been typed, there apewsys
to recaer. The sharp-charactef#'’ erases the last
character typed; in fact successiwses of ‘#'’ erase
characters back to the beginning of the ling (ot be-
yond). Saif you type badlyyou can correct as you go:

dd#atte#tte

is the same as “date”.

The at-sign ‘@” erases all of the characters
typed so far on the current input line, so if the line-is ir
retrievably fouled up, type an@’’ and start wer (on
the same line!).

What if you must enter a sharp or at-sign as part
of the tt? If you precede eithef#’ or “@" by a
backslash'’, it loses its erase meanin@:his implies
that to erase a backslash, youé® type two sharps or
two a-signs. Thebackslash is used&nsiely in UNIX
to indicate that the following character is in someyw
special.

Readahead

UNIX has full readahead, which means that you
can type asafst as you want, whever you want, gen
when some command is typing at you. If you type dur
ing output, your input characters will appear interemix
with the output characters, but yheill be stored aay
by uNix and interpreted in the correct orde$o you
can type tw commands one after another withoudity
ing for the first to finish orveen begn.

Stopping a Program

You can stop most programs by typing the ehar
acter ‘DEL” (perhaps calleddelete’ or ‘‘rubout” on
your terminal). There are exceptionselithe text edi-
tor, whereDEL stops whateer the program is doingu
leaves you in that program.You can also just hang up
the phone. The'interrupt” or ‘‘break” key found on
most terminals has no effect.

Logging Out

The easiest ay to log out is to hang up the
phone. Yu can also type

login name—of—new-user

and let someone else use the terminal you weredton.
is not suficient just to turn dfthe terminal. uNnix has
no time-out mechanism, so you'll be there f@reun-
less you hang up.

Mail
When you log in, you may sometimes get the
message

You havemail.

UNIX provides a postal system so you can send and re-
ceie letters from other users of the systeifo read
your mail, issue the command

mail
Your mail will be printed, and then you will be asked
Save?

If you do want to sz the mail, typey, for “yes”; any
other response means “no”.

How do you send mail to someone els&p-
pose it is to go tojbe” (assuming‘joe’” is someone’s
login name). The easiest way is this:

mail joe

now type in the text of the letter

on as many lines as youdik.

after the last line of the letter

type the character “control-d”,

that is, hold down “control'and type
a letter “d”.

And thats it. The* control-d’ sequence, usually called
“EQT”, is used throughoutnix to mark the end of in-
put from a terminal, so you might as well get used to it.

There are other ways to send mail _ you can send
a previously prepared letteand you can mail to a num-
ber of people all at once=or more details semail (1).

The notationmail (I) means the commanahail
in section (I) of thesnix Programmers Manual.

Writing to other users

At some point in youmnNix career out of the
blue will come a message like

Message from joe...

accompanied by a startling beep. It means that Joe
wants to talk to you, but unless you éa&plicit action

you won't be ale to talk back.To respond, type the
command

write joe

This establishes a twwvay communication pathNow
whatever Joe types on his terminal will appear on yours
and vice ersa. Thepath is slav, rather lile talking to

the moon. (If you are in the middle of something, you
have © get to a state where you can type a command.
Normally, whatever program you are running has to-ter
minate or be terminated. If you're editing, you can es-
cape temporarily from the editor _ read the manual.)

A protocol is needed to keep what you type from
getting garbled up with what Joe typeBypically it's
like this:

Joe types “write smith'and waits.

Smith types “write joe’and waits.

Joe nav types his message (as ngdimes as he
likes). Wherhe’s ready for a replyhe sgnals it
by typing (0), which stands for te@r”.

Now Smith types a replydso terminated by
(0).

This cycle repeats until someone gets tired; he
then signals his intent to quit with (o+o), for
“ over and out”.

To terminate the comrsation, each side must
type a ‘control-d” character alone on a line.
(“Delete” also works.) Whenthe other person
types his ‘control-d”, you will get the message
“EQT” on your terminal.

If you write to someone who ignfogged in, or
who doesrt'want to be disturbed, you'll be told. If the
target is logged in but doegrénswer after a decent in-
terval, simply type “control-d”.

On-line Manual

Theunix Programmes Manual is typically kpt
on-line. If you get stuck on something, and d¢dimd

an expert to assist you, you can print on your terminal
some manual section that might helg.s dso useful

for getting the most up-to-date information on a com-
mand. D print a manual section, type “man section-
name’. Thusto read up on th&eho command, type

man who

If the section in question ignin part | of the manual,
you hare o give the section number as well, as in

man 6 chess

Of course youe out of luck if you can’remember the
section name.

Il. DAY-TO-DAY USE

Creating Files _ The Editor

If we hare © type a paper or a letter or a pro-
gram, hav do we et the information stored in the ma-
chine? Mostof these tasks are done with theix
“text editor’ ed. Since ed is thoroughly documented
in ed(l) and eplained inA Tutorial Introduction to the
UNIX Tex Editor, we won't spend ag time here de-
scribing hav to use it. All we want it for right n& is
to male omefiles. (A file is just a collection of infer
mation stored in the machine, a simplistic but adequate
definition.)

To aeate a file with some text in it, do the fol-
lowing:

ed (irvokes the text editor)
a (command to “ed”, to add text)
now type in
whatever text you want ...
(signals the end of adding text)

At this point we could do various editing operations on
the text we typed in, such as correcting spelling mis-
takes, rearranging paragraphs and the.likinally we
write the information we he typed into a file with the
editor command “w”:

w junk
ed will respond with the number of characters it wrote
into the file called “junk”.

Suppose we o add a fev more lines with ‘a”,
terminate them with'.” , and write the whole thing out
as “temp”, using

w temp

We should nav have two files, a smaller one called
“junk” and a bigger one (bigger by the extra lines)
called “temp’. Type a “q” to quit the editor.

What files are aut there?

Thels (for “list’’) command lists the names (not
contents) of ay of the files thatunix knows about. If
we type

Is
the response will be

junk
temp

which are indeed our mfiles. Theg are sorted into al-
phabetical order automaticallput other variations are
possible. Br example, if we add the optionabament
“

Is —t

lists them in the order in which thevere last changed,
most recent first. The-I'’ option gives a ‘long” list-

ing:
Is -
will produce something like

—rw—rw—rw— lbwk 41Sep 22 12:56 junk
—rw—rw—rw— 1bwk 78Sep 22 12:57 temp

The date and time are of the last change to theTite

41 and 78 are the number of characters (you got the
same thing froned). “bwk’’ is the owner of the file _
the person who created ithe *-rw-rw-rw-"" tells who

has permission to read and write the file, in this case
evayone.

Options can be combineds'-It'” would give the
same thing, but sorted into time ordéfou can also
name the files you're interested in, dsdwill list the
information about them only More details can be
found inls(l).

It is generally true obNnix programs thatflag”
arguments lik “-t'’ precede filename arguments.

Printing Files
Now that youve got a file of tet, hov do you

print it so people can look at it? There are a host of
programs that do that, probably more than are needed.

One simple thing is to use the edjtance print-
ing is often done just before making changepnay.
You can say

ed junk
1,$p

ed will reply with the count of the characters fjunk”
and then print all the lines in the fil&fter you learn
how to use the editgryou can be seleet eout the
parts you print.

There are times when st'ot feasible to use the
editor for printing. For example, there is a limit on ho
big a file ed can handle (about 65,000 characters or
4000 lines). Secondly it will only print one file at a
time, and sometimes you want to prinvesal, one af-
ter another So here are a couple of alternads.

First is cat, the simplest of all the printing pro-
grams. cat simply copies all the files in a list onto the
terminal. Soyou can say

cat junk
or, to print two files,
cat junk temp

The two files are simply concatenated (hence the name
“ cat”) onto the terminal.

pr produces formatted printouts of fileAs with
cat, pr prints all the files in a list. The difference is that
it produces headings with date, time, page number and
file name at the top of each page, axiieelines to skip
over the fold in the paperThus,

pr junk temp

will list “‘junk’” neatly then skip to the top of a we
page and list “tempheatly.

pr will also produce multi-column output:
pr =3 junk

prints ‘junk’’ in 3-column format. You can use ap
reasonable number in place &'* and pr will do its
best.

It should be noted that is nota formatting pro-
gram in the sense of shuffling lines around and justify-
ing magins. Thetrue formatters areoff, nroff, and
troff , which we will get to in the section on document
preparation.

There are also programs that print files on a high-
speed printerLook in your manual undepr andlpr.
Which to use depends on the hardware configuration of
your machine.

Shuffling Files About

Now that you hae osme files in the file system
and some experience in printing them, you can try big-
ger things. For example, you can me a fle from one
place to another (which amounts to giving a file & ne
name), lile tis:

mv junk precious

This means that what used to Hank’’ is now “pre-
cious’. If you do arls command nw, you will get

precious
temp

Beware that if you mwe a fle to another one that al-

ready aists, the already existing contents are lost for
eve.

If you want to mak acopyof a file (that is, to
have wo versions of something), you can use tpe
command:

cp precious templ

makes a duplicate cgpf “precious’ in ‘ ‘templ”.

Finally, when you get tired of creating and wo
ing files, there is a command to remadiles from the
file system, calledm.

rm temp templ

will remove dl of the files named.You will get a warn-
ing message if one of the named files weth@re.

Filename, What's in a

So far we hee wsed filenames withoutver say-
ing whats a kga name, so i tme for a couple of
rules. First,filenames are limited to 14 characters,
which is enough to be descrigi Second, although
you can use almost prcharacter in a filename, com-
mon sense says you should stick to ones that are visi-
ble, and that you should probablyoal characters that
might be used with other meaningé/e dready s,
for example, that in thées command, “Is -t meant to
list in time order So if you had a file whose nameas/
“-t”, you would hae a bugh time listing it by name.
There are a number of other characters whicke l3ze-
cial meaning either toNIx as a whole or to numerous
commands. @ avoid pitfalls, you would probably do
well to use only letters, numbers and the peri@bn't
use the period as the first character of a filename, for
reasons too complicated to go into.)

On to some more posig siggestions. Suppose
you're typing a large document éka ok. Logically
this divides into may small pieces, lik chapters and
perhaps sectionsPhysically it must be dided too, for
ed will not handle big files.Thus you should type the
document as a number of file¥ou might have a &pa-
rate file for each chaptemalled

chapl
chap2
etc...

Or, if each chapter were broken intoveal files, you
might have

chapl.1
chapl.2
chapl.3

chap2.1
chap2.2

You can nav tell at a glance where a particular file fits
into the whole.

There are adhntages to a systematic naming
corvention which are not olious to the naice uNix
user What if you wanted to print the whole book?
You could say

pr chapl.1 chapl.2 chapl.3

but you would get tired pretty fast, and would probably
even make mistakes. rtunately there is a shortcut.
You can say

pr chap*

The ¥’ means “anything at all”, so this translates into

“ print all files whose names begin with ‘chap’ ”, listed
in alphabetical orderThis shorthand notation is not a
property of thepr command, by the ay. It is system-
wide, a service of the program that interprets com-
mands (the'shell” sh(l)). Usingthat fact, you can see
how to list the files of the book:

Is chap*
produces

chapl.1
chapl.2
chapl.3

The “*" ' is not limited to the last position in a filename
_itcan be apwhere. Thus

rm *junk*
removes dl files that contain ‘junk’ as awy part of

their name. As a special cas¥; " by itself matches
evay filename, so

pr*
prints all the files (alphabetical order), and
rm*

removes all files. (You had better be sure thativhat
you wanted to say!)

The **'’ is ot the only pattern-matching feature
available. Supposgou want to print only chapters 1
through 4 and 9 of the book. Then you can say

pr chap[12349]*

The ‘[...]" means to match grof the characters inside
the braclets. You can also do this with

pr chap[1-49]*

“[a-z]” matches ay character in the rangethroughz.
There is also d?”’ characterwhich matches ansingle
characterso

pr?
will print all files which hae sngle-character names.

Of these niceties,* ' is probably the most use-
ful, and you should get used to ithe others are frills,
but worth knowing.

If you should ger haveto turn of the special
meaning of *"’, “*?”, etc., enclose the entiregument
in quotes (single or double), as in

|S n?n

What's in a Flename, Continued

When you first made that file calléguhk’, how
did uNix know that there vasnt another ‘junk’’ some-
where else, especially since the person in the négeof
is also reading this tutorial? The reason is that general-
ly each user ofiNix has his wn “directory”, which
contains only the files that belong to him. When you
create a ng file, unless you tak pecial action, the
new file is made in your own directqrgnd is unrelated
to ary other file of the same name that might exist in
someone elss'drectory.

The set of all files thatnix knows about are er
ganized into a (usually big) tree, with your files located
several branches up into the treét.is possible for you
to “walk’’ around this tree, and to find wafile in the
system, by starting at the root of the tree ardking
along the right set of branches.

To begn, type
Is/

“I'""is the name of the root of the tree (a warion
used byunix). You will get a response somethingelik
this:

bin

dev

etc

lib

tmp

usr

This is a collection of the basic directories of files that
UNIX knows about.On most systemsiusr” is a direc-
tory that contains all the normal users of the system,
like you. Naw try

Is /usr

This should list a long series of names, among which is
your own login name. Finallyry

Is /usr/lyour—name

You should get what you get from a plain
Is

Now try
cat /usrlyour—namef/junk

(if “junk’ " is still around). The name
/usr/lyour—-name/junk

is called the‘pathname’ of the file that you normally
think of as junk’’. ‘‘Pathnamé’has an ohious mean-
ing: it represents the full name of the path youehta
follow through the tree of directories to get to a particu-
lar file. It is a uniersal rule inunix that alywhere you
can use an ordinary filename, you can use a pathname.

Here is a picture which may malbhis clearer:

(root)
/]\
/]\
I\
bin etc usr de tmp
AR RARYAR
[\
I\
adam ge nmary
/ !\ \
/[\' junk
junk temp

Notice that Marys “junk’’ is unrelated to Eve’s.

This isnt too exciting if all the files of interest
are in your own directonybut if you work with some-
one else or on seral projects concurrentlyt becomes
handy indeed For example, your friends can print your
book by saying

pr /usrlyour—name/chap*

Similarly, you can find out what files your neighbor has
by saying

Is /usr/neighbor-name
or male your own cop of one of his files by

cp /usrlyour—neighbor/his—file yourfile

(If your neighbor doesh’want you poking
around in his files, or vice versa, @iy can be ar
ranged. Eacfile and directory can lva read-write-ex-
ecute permissions for thevoer, a goup, and eeryone
else, to control acces$eels(l) andchmod(l) for de-
tails. Asa matter of observed fact, most users most of
the time find openness of more benefit thangpyi)

As a final experiment with pathnames, try
Is /bin /usr/bin

Do some of the names loo&rhiliar? Whernyou run a
program, by typing its name after ‘&"’, the system

simply looks for a file of that name. It looks first in
your directory (where it typically doegrfind it), then
in “/bin’’ and finally in ‘/usr/bin”. Thereis nothing
magic about commands élcat or Is, except that the
have keen collected into tav places to be easy to find
and administer.

What if you work regularly with someone else on
common information in his directoryYou could just
log in as your friend each time you want to, but you can
also say “I want to wrk on his files instead of my
own”. This is done by changing the directory that you
are currently in:

chdir /usr/your—friend

Now when you use a filename in something lifat or
pr, it refers to the file in‘your-friend’s” directory.
Changing directories doesradffect aly permissions as-
sociated with a file _ if you couldnréccess a file from
your own directory changing to another directory
won'’t ater that fact.

If you forget what directory you're in, type
pwd

(“print working directory”) to find out.

It is often comenient to arrange orefiles so that
all the files related to one thing are in a directory sepa-
rate from other projectskor example, when you write
your book, you might ant to keep all the text in a di-
rectory called book. So malmne with

mkdir book
then go to it with
chdir book

then start typing chapters. The book isvnimund in
(presumably)

/usr/lyour—name/book

To delete a directoryseermdir (1).

You can go up one il in the tree of files by
saying

chdir ..

“." i s the name of the parent of whatedirectory you
are currently in.For completeness,.” i s an #ernate

name for the directory you are in.

Using Files instead of the Terminal

Most of the commands we V& ®en so far pro-
duce output on the terminal; someglike editoy dso
take their input from the terminal. It is warsal in
UNIX that the terminal can be replaced by a file for ei-
ther or both of input and outpuAs one example, you
could say

Is
to get a list of files. But you can also say
Is >filelist

to get a list of your files in the filéilelist’’. (‘‘filelist”

will be created if it doeshaready exist, or werwritten

if it does.) The symbol="" is used throughoutnix to
mean “put the output on the following file, rather than
on the terminal’ Nothingis produced on the terminal.
As another example, you could concatenaterakfiles
into one by capturing the output @t in a file:

cat f1 f2 f3>temp

Similarly, the symbol ‘<’* means to ta the in-
put for a program from the following file, instead of
from the terminal. Thus, you could makup a sript of
commonly used editing commands and put them into a
file called ‘script”. Thenyou can run the script on a
file by saying

ed file <script

Pipes

One of the neel contributions ofunix is the idea
of apipe. A pipe is simply a way to connect the output
of one program to the input of another program, so the
two run as a sequence of processes _ a pipe-line.

For example,

prfgh

will print the files 'f’’, *‘g’* and “h’’, beginning each
on a nev page. Supposgou want them run together
instead. ¥u could say

cat f g h >temp
pr temp
rm temp

but this is more work than necessa@early what we
want is to take the output otat and connect it to the in-
put ofpr. So let us use a pipe:

cat f g h | pr

The vertical bar means to takhe output fromcat,
which would normally hee gone to the terminal, and
put it intopr, which formats it neatly.

Any program that reads from the terminal can
read from a pipe instead; yaprogram that writes on
the terminal can dre a ppe. You can hee & mary e-
ements in a pipeline as you wish.

Many UNIX programs are written so that yhwill
take their input from one or more files if file@rments
are gven; if no arguments are\gin they will read from
the terminal, and thus can be used in pipelines.

The Shell

We have already mentioned once or twice the
mysterious ‘shell,” w hich is in factsh(l). Theshell is
the program that interprets what you type as commands
and aguments. lalso looks after translating™’, etc.,
into lists of filenames.

The shell has other capabilities toBor exam-
ple, you can start twprograms with one command line
by separating the commands with a semicolon; the shell
recognizes the semicolon and breaks the line into tw
commands. Thus

date; who

does both commands before returning with a “%”.

You can also hee nore than one program run-
ning simultaneouslyf you wish. For example, if you
are doing something time-consuming,elithe editor
script of an earlier section, and you dowant to vait
around for the results before starting something else,
you can say

ed file <scrip&

The ampersand at the end of a command line says
“start this command running, then ¢afurther com-
mands from the terminal immediat&lyT hus the script

will begin, but you can do something else at the same
time. Of course, to keep the output from interfering
with what you’re doing on the terminal, it would be
better to hee sid

ed file <scriptlines &

which would sae te output lines in a file called
“lines”.

When you initiate a command with&”, UNIX
replies with a number called the process numiskeich
identifies the command in case you latanito stop it.
If you do, you can say

kill process—number

You might also reagbs(l).
You can say

(command-1; command—-2; command-3) &

to start these commands in the background, or you can
start a background pipeline with

command-1 | command-2 &

Just as you can tell the editor or some similar
program to ta& its input from a file instead of from the
terminal, you can tell the shell to read a file to get com-
mands. (Wl not? The shell after all is just a program,
albeit a cleer one.) For instance, suppose you want to
set tabs on your terminal, and find out the date and
who'’s i the systemary time you log in. Then you
can put the three necessary commandabé, date;

who) into a file, lets all it “ xxx”, and then run it with
either

sh xxx
or
sh <xxx

This says to run the shell with the filexx’’ as input.
The effect is as if you had typed the contentsxodk”
on the terminal. (If this is to be ag@ar thing, you can
eliminate the need to typeésh”; see chmod(l) and
sh(l).)

The shell has quite avieother capabilities as
well, some of which wéf’ get to in the section on pro-
gramming.

IIl. DOCUMENT PREPARATION

UNIX is extensively used for document prepara-
tion. Thereare three majoformatting programs, that
is, programs which produce axtewith justified right
mamgins, automatic page numbering and titling, auto-
matic hyphenation, and the ¢k Thesimplest of these
formatters igoff, which in fact is simple enough that if
you type almost antext into a file and‘foff’ it, you
will get plausibly formatted outputYou can do better
with a little knowledge, but basically st'easy to learn
and use.We'l | get back taoff shortly.

nroff is similar toroff but does much less for
you automatically It will do a great deal more, once
you knav how to use it.

Both roff andnroff are designed to produce out-
put on terminals, line-printers, and theelik Thethird
formatter,troff (pronounced‘tee-roff’’), instead dnes
a Graphic Systems phototypesettavhich produces
very high quality output on photographic papérhis
paper was printed on the phototypesettetrafy .

Becausenroff and troff are relatiely hard to
learn to use éfctively, seveal “packages’of canned
formatting requests arevailable which let you do
things like paragraphs, running titles, multi-column
output, and so on, with little fefit. Regrettably details
vary from system to system.

ROFF

The basic idea abff (and ofnroff andtroff, for
that matter) is that the text to be formatted contains
within it “formatting commands'that indicate in detail
how the formatted text is to lookFor example, there
might be commands that specifywadong lines are,
whether to use single or double spacing, and what run-
ning titles to use on each pagk general, you doi’
have © ell out all of the possible formatting details.
Most of them hee “default values’, which you will

get if you say nothing at allFor example, unless you
take gecial precautions, you'll get single-spaced out-
put, 65-character lines, justified right margins, and 58
text lines per page when ygaff a file. Thisis the rea-
son thatroff is so simple _ most of the decisionyéa
already been made for you.

Some things do va o be dne, hovever. If you
want a document bra@o into paragraphs, you Vet
tell roff where to add the extra blank lines. This is
done with the “.sp’command:

this is the end of one paragraph.

.sp
This begins the next paragraph ...

In roff (and innroff andtroff), formatting commands
consist of a period followed by twletters, and the
must appear at the beginning of a line, all by them-
seles. The'.sp’ command tellsoff to finish printing
ary of the previous line that might be still unprinted,
then print a blank line before continuinyou can hae
more space if you wish'.sp 2" asks for 2 spaces, and
sSo on.

If you simply want to ensure that subsequent te
appears on a fresh output line, you can use the com-
mand “.br” (for “break”) instead of “.sp”.

Most of the other commonly-usemff com-
mands are equally simpld=or example you can center
one or more lines with the “.ce&&ommand.

.ce
Title of Paper
.Sp 2

causes the title to be centered, then followed by tw
blank lines. As with “.sp”, ‘*.ce” can be followed by a
number; in that case, that nyamput lines are centered.

“.ul” underlines lines, and can also be foléml
by a number:

.ce2
.ul2
An Earth—shaking Paper

.Sp
John Q. Scientist

will center and underline the bwtext lines. Noticethat
the “.sp” between them is not part of the line count.

You can get multiple-line spacing instead of the
default single-spacing with the “.I£ommand:

Is 2

causes double spacing.

If you're typing things lile &ables, you will not
want the automatic filling-up and justification of output
lines that is done by dadilt. You can turn this éfwith
the command*‘.nf’’ (no-fill), and then back on am
with “.fi'* (fill). Thus

this section is filled by default.

.nf

here lines will appear just

as you typed them _

no extra spaces, ho moving of words.
fi

Now go back to filling up output lines.

You can change the line-length withll'’, and
the left margin (the indent) by.ih’’. Theseare often
used together to maldfset blocks of text:

=10

.in +10

this text will be meed 10 paces to
the right and the lines will also be
shortened 10 characters from the
right. The“+” and “-"" mean to
changethe previous value by that
much. Naev revet:

I+10

.in-10

Notice that “.Il +10’ adds ten characters to the line
length, while “.Il 10° makes the line ten characters
long.

The “.ti"’ command indents (in either direction)
just like “.in’", except for only one lineThus to mak
a rew paragraph with a 10-character indent, yoound
say

.Sp
i +10

New paragraph ...

You can put running titles on both top and bot-
tom of each page, lkthis:

.he "left top"center top"right top”
.fo "left bottom"center bottom"right bottom"

The header or footer is divided into three parts, which
are marked dfby any character you lik. (We wsed a
double quote.)If there's nothing between the magks,

that part of the title will be blankif you use a percent
sign anywhere in.he” or **.fo’’, the current page num-
ber will be inserted. So to get centered page numbers
with dashes around them, at the top, use

he "0 =

You can skip to the top of a nepage at ay time with
the *.bp” command, if “.bp” is followed by a number
that will be the n& page number.

The foregoing is probably enough abooff for
you to go of and format most eeryday documents.
Readroff (1) for more details.

—-10-

Hints for Preparing Documents

Most documents go throughveeal versions (al-
ways more than you expected) beforeytlaee finally
finished. Accordinglyyou should do whater possi-
ble to male the job of changing them easy.

First, when you do the purely mechanical opera-
tions of typing, type so subsequent editing will be easy
Start each sentence on awmnbkne. Male lines short,
and break lines at natural places, such as after commas
and semicolons, rather than random8nce most peo-
ple change documents by rewriting phrases and adding,
deleting and rearranging sentences, these precautions
simplify ary editing you hae o do later.

The second aspect of making change easy is not
to commit yourself to formatting details too earkor
example, if you decide that each paragraph is t@lea
space and an indent of 10 characters, you might type,
before each,

.Sp
i +10

But what happens when later you decide thatoitile
have been better to ha@ o space and an indent of only
5 characters? I¢ tedious indeed to go back and patch
this up.

Fortunately al of the formatters let you delay de-
cisions until the actual moment of running. The secret
is to define a ne operation (called anacro),for each
formatting operation you want to do, diknaking a ne
paragraph. ¥u can sayin dl three formatters,

.de PP

.Sp
i +10

This defines' .PP’ as a rew roff (or nroff or troff) op-
eration, whose meaning is exactly

.Sp
1i +10

(The “..” marks the end of the definition\Vheneer
“.PP’ is encountered in the text, it is as if you had
typed the tw lines of the definition in place of it.

The beauty of this scheme is thatwdf you
change your mind about what a paragraph should look
like, you can change the formatted output merely by
changing the definition of.PP” and re-running the
formatter.

As a rule of thumb, for all i the most txial
jobs, you should type a document in terms of a set of
macros lilke “.PP”, and then define them appropriately
As long as you hae entered the text in some systematic
way, it can alvays be cleaned up and re-formatted by a
judicious combination of editing and macro definitions.
The packages of formatting commands that we men-

tioned earlier are simply collections of macros designed
for particular formatting tasks.

One of the main diérences betweemnff and the
other formatters is that macrosrinff can only be lines
of text and formatting commandsn nroff and troff,
macros may ha aguments, so thecan hae dfferent
effects depending on kothey are called (in exactly the
same vay that the ‘'sp” command has an gument,
the number of spaces you want).

Miscellany

In addition to the basic formattersyix provides
a host of supporting programseqgn and negn let you
integrate mathematics into the text of a document, in a
language that closely resembles the way yauld
speak it aloud.spell andtypo detect possible spelling
mistales in a documentgrep looks for lines contain-
ing a particular text pattern (ratherdikhe editors con-
text search does, but on a whole series of fil€sy.ex-
ample,

grep "ing$" chap*

will find all lines ending in the letterdrig’’ in the se-
ries of files ‘chap*”. (It is almost alays a good prac-
tice to put quotes around the pattern you're searching
for, in case it contains characters thawvéna pecial
meaning for the shell.)

wc counts the words and (optionally) lines in a
set of files. tr translates characters into other charac-
ters; for example it will corert upper to lower case and
vice wersa. Thidranslates upper into lower:

tr "[A-Z]" “[a-2]"

diff prints a list of the differences betweenotw
files, so you can compare dwersions of something
automatically (which certainly beats proofreading by
hand). sort sorts files in a variety of ays;cref makes
cross-references;ptx makes a permuted inde
(keyword-in-context listing).

Most of these programs are either independently
documented (lik eqn and neqgn), or are sufciently
simple that the description in thenix Programmer’s
Manualis adequate explanation.

IV. PROGRAMMING

UNIX is a marelously pleasant and produei
system for writing programs; productivity seems to be
an order of magnitude higher than on other interacti
systems.

There will be no attempt made to teacl ahthe
programming languagesvalable onunix, but a fev
words of advice are in ordefFirst, UNIX is written in
C, as is most of the applications codfyou are under
taking aiything substantial, C is the only reasonable
choice. Moreon that in a moment. But remember that

—-11 -

there are quite aveprograms already written, some of
which hare sibstantial power.

The editor can be made to do things thauld
normally require special programs on other systems.
For example, to list the first and last lines of each of a
set of files, say a book, you could laboriously type

ed
e chapl.l

But instead you can do the job once and for &pe
Is chap* >temp

to get the list of filenames into a fil&hen edit this file

to male the necessary series of editing commands (us-
ing the global commands dd), and write it into
“script’. Now the command

ed <script

will produce the same output as the laborious hand typ-
ing.

The pipe mechanism lets youwbficate quite
complicated operations out of spare parts alreauly. b
For example, the first draft of thepell program vas
(roughly)

cat ... (collect the files)

| tr ... (puteach word on a meline,
delete punctuation, etc.)

| sort (intodictionary order)

| uniq (stripout duplicates)

| comm (listwords found in text but
not in dictionary)

Programming the Shell

An option often verlooked by nevcomers is that
the shell is itself a programming language, and since
UNIX already has a host of building-block programs,
you can sometimesvaid writing a special purpose pro-
gram merely by piecing together some of théding
blocks with shell command files.

As an unlikely example, suppose yowamnw to
count the number of users on the machivayehour
You could type

date
who | we -

evay hour and write down the numbers, but that is
rather primitve. The next step is probably to say

(date; who | wec —I) >>users

which uses ‘>>"" to appendto the end of the file
“users. (We haven't mentioned >>"" before _ its
another service of the shellNow al you have © do is
to put a loop around this, and ensure tha @ne
evay hour Thus, place the follsing commands into a
file, say “count”:

> loop

(date; who | wec —I) >>users
sleep 3600

goto loop

The command is followed by a space and a label,
which you can thegoto. Notice that its quite legd to
branch backards. Naev if you issue the command

sh count &

the users will be counted@y hour, and you can go on
with other things. (You will have © usekill to stop
counting.)

If you would like “every hour’ to be a @rame-
ter, you can arrange for that too:

: loop

(date; who | wec — [) >>users
sleep $1

goto loop

“$1” means the first argument when this procedure is
invoked. If you say

sh count 60

it will count every minute. A shell program can ha
up to nine arguments, “$Irhrough “$9".

The other aspect of programming is conditional
testing. Theif command can test conditions anxt e
ecute commands accordinghAs a smple example,
suppose you want to add to your login sequence some-
thing to print your mail if you hae sme. Thusknow-
ing that mail is stored in a file called ‘mailbox’, you
could say

if —r mailbox mail

This says “if the file ‘mailbox’ is readablexecute the
mail command.

As another gample, you could arrange that the
“count’ procedure countvery hour by default, but al-
low an gotional agument to specify a different time.
Simply replace the “sleep $1ine by

if $1x = x sleep 3600
if $1x != x sleep $1

The construction
if $1x = X

tests whether$l”, the first argument, as present or
absent.

- 12—

More complicated conditions can be tested: you
can find out the status of ameeuted command, and
you can combine conditions with ‘and’, ‘or’, ‘not’ and
parentheses _ sé(l). You should also reashift (I)
which describes o to manipulate arguments to shell
command files.

Programming in C

As we said, C is the language of choiceerg-
thing inuNIX is tuned to it.It is also a remarkably easy
language to use once you get started. Sections Il and
Il of the manual describe the system interfaces, that is,
how you do I/O and similar functions.

You can write quite significant C programs with
the level of 1/0 and system interface describedPiro-
gramming in C: A Utorial, if you use existing pro-
grams and pipes to helpFor example, rather than
learning hav to open and close files you can (at least
temporarily) write a program that reads from its stan-
dard input, and useat to concatentate geral files into
it. This may not be adequate for the long runt for
the early stages #’just right.

There are a number of supporting programs that
go with C. The C dalmgger,cdb, is marginally useful
for digging through the dead bodies of C programs.
db, the assembly language dejger is actually more
useful most of the time, but youvei knov more
about the machine and system to use it well. The most
effective cebugging tool is still careful thought, coupled
with judiciously placed print statements.

You can instrument C programs and thus find out
where thg spend their time and what parts arerti
optimising. Compilghe routines with thé-p’’ option;
after the test run ugerof to print an &ecution profile.
The commandime will give you the gross run-time
statistics of a program, butstihot super accurate or re-
producible.

C programs that dobh'depend too much on spe-
cial features ofunix can be meed to the Hongwell
6070 andiBm 370 systems with modestfeft. Read
TheccosC Library by M. E. Lesk and B. A. Barres for
details.

Miscellany

If you haveto use Brtran, you might consider
ratfor, which gves you the decent control structures
and free-form input that characterize C, yet lets you
write code that is still portable to othervennments.
Bear in mind thatinix Fortran tends to produce &g
and relatrely slow-running programs.Furthermore,
supporting software li&db, prof, etc., are all virtually
useless with Fortran programs.

If you want to use assembly language (allvhea
ens forfend!), try the implementation language,
which gives you mary of the advantages of a high#&

language, lik decent control fle structures, bt still
lets you get close to the machine if you really want to.

If your application requires you to translate a lan-
guage into a set of actions or another language, you are
in effect building a compilethough probably a small
one. Inthat case, you should be using tfeec com-
piler-compiler which helps you delop a compiler
quickly.

V. UNIX READING LIST
General:

UNIX Programmes Manual (Kken Thompson, Dennis
Ritchie, and a cast of thousandg)sts commands, sys-
tem routines and interfaces, file formats, and some of
the maintenance procedure¥ou cant live without
this, although you will probably only read section I.

The unix Time-sharing System @6 Thompson, Den-
nis Ritchie). CACM, July 1974. An werview of the
system, for people interested in operating systems.
Worth reading by ayone who programs. Contains a
remarkable number of one-sentence observations on
how to do tings right.

Document Preparation:

A Tutorial Introduction to thenix Text Editor. (Brian
Kernighan). BellLaboratories internal memorandum.
Weak on the more esoteric uses of the egditat still
probably the easiest way to leah

Typing Documents omnix. (Mike Lesk). BellLabo-
ratories internal memorandumA macro package to
isolate the neice from the agaries of the formatting
programs. Ifthis specific package ignavailable on
your system, something similar probably is. This one
works with bothnroff andtroff .

Programming:

Programming in C: A Tutorial (Brian étnighan). Bell
Laboratories internal memorandurfihe easiest way to
start learning C, but &'no felp at all with the inteece

to the system beyond the simplest 0. Should be read
in conjunction with

C Reference Manual (Dennis RitchieRell Laborato-
ries internal memorandum. An excellent reference, b
a hit heavy going for the lggnner especially one who
has neer used a language EkC.

Others:

D. M. Ritchie, UNIX Assembler Reference Manual.

B. W. Kernighan and L. L. ChernA System for Tpe-
setting Mathematics, Computing Science Tech. Rep.
17.

M. E. Lesk and B. A. Barres, The GCOS C Library
Bell Laboratories internal memorandum.

K. Thompson and D. M. Ritchie, Setting Up UNIX.
M. D. Mcllroy, UNIX Summary.

— 13-

D. M. Ritchie, The UNIX I/O System.

A. D. Hall, The M6 Macro ProcessdComputing Sci-
ence Tech. Rep. 2.

J. E Ossanna, NROFF UserManual _ Second Edi-
tion, Bell Laboratories internal memorandum.

D. M. Ritchie and K. Thompson, Regenerating System
Software.

B. W. Kernighan, Ratfor_A Rational Fortran, Bell Lab-
oratories internal memorandum.

M. D. Mcllroy, Synthetic English Speech by Rule,
Computing Science Tech. Rep. 14.

M. D. Mcllroy, Bell Laboratories internal memoran-
dum.

J. E Ossanna, TROFF Users’ Manual, Bell Laborato-
ries internal memorandum.

B. W. Kernighan, TROFF Maderivial, Bell Laborato-
ries internal memorandum.

R. H. Morris and L. L. CherryComputer Detection of
Typographical Errors, Computing Sciencecfi. Rep.
18.

S. C. Johnson, ACC (Yet Another CompilecCompil-
er), Bell Laboratories internal memorandum.

P. J Plauger Programming in LIL: A Tutorial, Bell
Laboratories internal memorandum.

Index

& (asynchronous process) 8
; (multiple processes) 8

* (pattern match) 5

[1 (pattern match) 6

? (pattern match) 6

<> (redirect I1/0) 7

>> (file append) 12
backslash (\) 2

cat (concatenate files) 4
cdb (C dehgger) 12

chdir (change directory) 7
chmod (change protection) 7
command aguments 4
command files 8

cp (copy files) 5

cref (cross reference) 11
date 2

db (assembly delyger) 13
delete (DEL) 2

diff (file comparison) 11
directories 7

document formatting 9
ed (editor) 3

editor programming 11

EOT (end of file) 3

eqn (mathematics) 11
erase character (#) 2

file system structure 6
filenames 5

file protection 7

goto 12

grep (pattern matching) 11
if (condition test) 12

index 14

kill a program 8

kill a character (@) 2

lil (high-level assembler) 13
login 1

logout 2

Is (list file names) 4

macro for formatting 10
mail 2

multi-columns printing (pr) 5
mv (move files) 5

nroff 9

on-line manual 3

opr (offline print) 5
pathname 6

pattern match in filenames 5
pipes (|) 8

pr (print files) 4

prof (run-time monitor) 13
protection 7

ptx (permuted indg 11
pwd (working directory) 7
guotes 6

ratfor (decent rtran) 13
readahead 2

reading list 13

redirect /0 (<>) 7
RETURN ley 1

rm (remave files) 5

rmdir (remwe drectory) 7
roff (text formatting) 9

root (of file system) 6

shell (command interpreter) 8
shell arguments ($) 12
shell programming 12
shift (shell aguments) 12
sleep 12

sort 11

spell (find spelling mistakes)
stopping a program 2

stty (set terminal options) 2
tabs (set tab stops) 2
terminal types 1

time (time programs) 13

tr (translate characters) 11
troff (typesetting) 9

typo (find spelling mistads) 11
wc (word count) 11

who (who is looged in) 2
write (to a user) 3
yacc (compilercompiler) 13

—14-—

