The UNIX Time-Sharing System

Dennis M. Ritchie
Ken Thompson

Bell Laboratories
Murray Hill, N. J. 07974

ABSTRACT

UNIX is a general-purpose, multi-useinteractve erating system for the Digital Equipment Corporation
PDP-11/40, 11/45 and 11/70 computels$.offers a number of features seldom foumwerein larger operating sys-
tems, including

1. A hierarchical file system incorporating demountable volumes,

2. Compatible file, device, and inter-process /O,

3. The ability to initiate asynchronous processes,

4. System command language selectable on a per-user basis,

5. Over 100 subsystems including a dozen languages.
This paper discusses the nature and implementation of the file system and of the user command interface.

1. Introduction

There hae been three versions ofNiX. The earliest ersion (circa 1969-70) ran on the Digital Equipment Corpo-
ration PDR-7 and -9 computers. The second version ran on the unprotmteld /20 computer This paper de-
scribes only thepr-11/40, /45 and /70system, since it is more modern and gnafithe differences between it and
olderunix systems result from redesign of features found to be deficient or lacking.

SincePDR-11 UNIX became operational in Februat®71, about 100 installations\eabeen put into service; the
are generally smaller than the system described here. Most of them ageeimgapplications such as the prepara-
tion and formatting of patent applications and othgtutd material, the collection and processing of trouble data
from various switching machines within the Bell System, and recording and checking telephone servic®©arders.
own installation is used mainly for research in operating systems, languages, computer networks, and other topics in
computer science, and also for document preparation.

Copyright © 1974, Association for Computing Machinglyc. Generapermission to republish, but not for profit, all or part of this material is
granted provided tha&tCM’s copyright notice is gien and that reference is made to the publication, to its date of issue, and to the fact that reprint-
ing privileges were granted by permission of the Association for Computing Machinery.

This is a revised version of an article appearing in the CommunicationsAgfrhe/olume 17, Number 7 (July 1974) pp. 365-37Hhat arti-
cle is a revisedersion of a paper presented at thoeifth ACM Symposium on Operating Systems PrinciplBsi Thomas J. Watson Research
Center Yorktown Heights, Ne York, October 15-17, 1973.

UNIX Time-Sharing System - 2

Perhaps the most important acta®ment ofUNIX is to demonstrate that a powerful operating system for interac-
tive uise need not bexpensve dther in equipment or in humanfeft: UNIX can run on hardware costing as little as
$40,000, and less thandwnan-years were spent on the main system swéw et UNIX contains a number of fea-
tures seldom offeredven in much larger systems-opefully, howeve, the users ofiNix will find that the most im-
portant characteristics of the system are its simplidiggance, and ease of use.

Besides the system prop#re major programsvailable undermunix are

assembler,

text editor based opED?,

linking loader,

symbolic debugger,

compiler for a language resemblirgpL® with types and structures (C),
interpreter for a dialect &asic,

phototypesetting and equation setting programs
Fortran compiler,

Snobol interpreter,

top-down compiler-compilerrac+),

bottom-up compiler-compilervfcc),

form letter generator,

macro processor (M9,

permuted ince program.

There is also a host of maintenance, utiliéggreation and n<y programs. All of these programs were written lo-
cally. Itis worth noting that the system is totally self-supportiidl. UNIX software is maintained undenix; like-
wise, this paper and all otherix documents were generated and formatted bythe editor and text formatting
program.

2. Hardware and software environment

The PDR-11/45 on which ouuNIX installation is implemented is a 16-bibvd (8-bit byte) computer with 112K
bytes of core memoryyNix occupies 53K bytes. This systemwwer, includes a very large number ofviee
drivers and enjoys a generous allotment of space for ufteis and system tables; a minimal system capable of run-
ning the software mentioned al@ocan require as little as 64K bytes of core altogether.

Our PDR-11 has a 1M byte fed-head disk, used for file system storage and swapping, four moving-head disk
drives which each provide 2.5M bytes on revable disk cartridges, and a single ving-head disk dvie which uses
removable 40M byte disk packs. There are also a high-speed paper tape reader-punch, nine-track magnetic tape, and
DECtape (a variety of magnetic tape facility in which indual records may be addressed anriteen). Besides
the console typeriter, there are 30ariable-speed communications interfaces attached to 100-series datasets and a
201 dataset inteste used primarily for spooling printout to a communal line prinkBere are also geral one-of-
a-kind devices including a Picturephone® interface, a voice response uviteasynthesizem phototypesettera
digital switching netwrk, and a satellitebr-11/20 which generates vectors, curves, and characters ektrariix
611 storage-tube display.

The greater part aiNix software is written in the alve-mentioned C language Early versions of the operating
system were written in assembly language, but during the summer of 1973, it was rewritten in C. The size of the
new system is about one third greater than the old. Since thesystem is not only much easier to understand and
to modify but also includes mgrfunctional impreements, including multiprogramming and the ability to share
reentrant code amongveeal user programs, we considered this increase in size quite acceptable.

UNIX Time-Sharing System - 3

3. The File system

The most important role aiNIX is to provide a file system. From the point ofwief the userthere are three
kinds of files: ordinary disk files, directories, and special files.

3.1 Ordinary files

A file contains whater information the user places on it, for example symbolic or binary (object) proghons.
particular structuring is expected by the system. Filesxbfcnsist simply of a string of characters, with lines de-
marcated by the new-line charact&inary programs are sequences of words ag \tikk appear in core memory
when the program startgeeuting. Afew user programs manipulate files with more structure; Xangple, the as-
sembler generates, and the loadgreets, an object file in a particular formé&towever, the structure of files is con-
trolled by the programs which use them, not by the system.

3.2 Directories

Directories provide the mapping between the names of files and the files tlemmnaaly thus induce a structure
on the file system as a whole. Each user has a directory ofhifles; he may also create subdirectories to contain
groups of files coreniently treated togetherA directory behees exactly like an adinary file except that it cannot
be written on by unpvileged programs, so that the system controls the contents of directdoesver, anyone
with appropriate permission may read a directory justdily ather file.

The system maintainsweeal directories for its own useOne of these is th®ot directory All files in the system
can be found by tracing a path through a chain of directories until the desired file is reached. The starting point for
such searches is often the root. Another system directory contains all the programs provided for general use; that is,
all thecommands As will be seen, haever, it is by no means necessary that a program reside in this directory for it
to be &ecuted.

Files are named by sequences of 14 or fewer charattéren the name of a file is specified to the system, it may
be in the form of gath namewhich is a sequence of directory names separated by slashesd ending in a file
name. Ifthe sequence bas with a slash, the search begins in the root direciing name alpha/ beta/gamma
causes the system to search the root for direetphya, then to searchlphafor beta,finally to findgammain beta
Gammamay be an ordinary file, a directoyr a pecial file. As a limiting case, the nami "refers to the root it-
self.

A path name not starting with *’ causes the system to begin the search in thesuserént directory Thus, the
namealpha/ betaspecifies the file namdsketain subdirectoryalphaof the current directoryThe simplest kind of
name, for gamplealpha, refers to a file which itself is found in the current directokg another limiting case, the
null file name refers to the current directory.

The same non-directory file may appear iwesa directories under possibly fifent names. This feature is
calledlinking; a drectory entry for a file is sometimes called a linkvix differs from other systems in which link-
ing is permitted in that all links to a fileVeejual status. That is, a file does not exist within a particular directory;
the directory entry for a file consists merely of its name and a pointer to the information actually describing the file.
Thus a file exists independently ofyadirectory entry dthough in practice a file is made to disappear along with the
last link to it.

Each directory alays has at least tventries. Thename “.” i n each directory refers to the directory itselfhus
a program may read the current directory under the namiev ithout knowing its complete path name. The name
“..” by convention refers to the parent of the directory in which it appears, that is, to the directory in whésh it w
created.

The directory structure is constrained toddhe form of a rooted tree. Except for the special entriesand
“..”, each directory must appear as an entry in exactly one, othah is its parentThe reason for this is to sim-
plify the writing of programs which visit subtrees of the directory structure, and more importamidtthe separa-
tion of portions of the hierargh If arbitrary links to directories were permitted, it would be quitéddift to detect
when the last connection from the root to a directory wesee.

UNIX Time-Sharing System - 4

3.3 Special files

Special files constitute the most unusual feature ofithve file system. Each I/O device supportedusyx is as-
sociated with at least one such file. Special files are read and writtengustlikary disk files, but requests to read
or write result in actiation of the associated dee. Anentry for each special file resides in directbalgy, although
a link may be made to one of these files just Bk adinary file. Thus, for example, to punch paper tape, one may
write on the file/dev / pt. Special files exist for each communication line, each disk, each tagead for plysi-
cal core memoryOf course, the acte dsks and the core special file are protected from indiscriminate access.

There is a threefold advantage in treating 1/0 devices this way: file and device 1/O are as similar as possible; file
and device names & the same syntax and meaning, so that a program expecting a file name as a parameter can be
passed a device name; finallgecial files are subject to the same protection mechanism as regular files.

3.4 Remwable file systems

Although the root of the file system isvalys stored on the samewitee, it is not necessary that the entire file sys-
tem hierarch reside on this déce. Therds amountsystem request which hasaverguments: the name of an-e
isting ordinary file, and the name of a special file whose associated stohage e. g. disk pack) shouldvgathe
structure of an independent file system containingvits directory hierarch The effect ofmountis to cause refer
ences to the heretofore ordinary file to refer instead to the root directory of the file system on vhkeleawiome.

In effect, mountreplaces a leaf of the hierayctree (the ordinary file) by a wholewesubtree (the hierarghstored

on the remwable wlume). Afterthe mount there is virtually no distinction between files on the resbte wlume
and those in the permanent file systdmour installation, for example, the root directory resides on tled-fiead
disk, and the large disk &8, which contains uses’files, is mounted by the system initialization program; the four
smaller disk dries ae available to users for mounting their own disk packsmountable file system is generated
by writing on its corresponding special fil&. utility program is &ailable to create an empty file system, or one may
simply copy an «isting file system.

There is only one exception to the rule of identical treatment of files on different devices: no link may exist be-
tween one file system hieraschnd another This restriction is enforced so as teo@ the elaborate bookleping
which would otherwise be required to assure neinaf the links when the remable volume is finally dismounted.
In particular in the root directories of all file systems, reraage or not, the name .'.” r efers to the directory itself
instead of to its parent.

3.5 Protection

Although the access control schemeinx is quite simple, it has some unusual features. Each user of the system
is assigned a unique user identification numb&hen a file is created, it is madk with the usem of its awner.
Also given for naw files is a set of sen protection bits. Six of these specify independently read, write, eeulie
permission for the owner of the file and for all other users.

If the seventh bit is on, the system will temporarily change the user identification of the current user to that of the
creator of the file whewer the file is &ecuted as a progranThis change in usep is efective mly during the -
ecution of the program which calls for it. The set-usefeature provides for prileged programs which may use
files inaccessible to other usefSor example, a program may keep an accounting file which should neither be read
nor changed»ept by the program itself. If the set-user-identification bit is on for the program, it may access the
file although this access might be forbidden to other prograroket by the given programs user Since the actual
useriD of the irvoker of any program is alvays available, set-usem programs may takany measures desired to
satisfy themselves as to theivaker's aedentials. Thisnechanism is used to alausers to recute the carefully-
written commands which call pileged system entried-or example, there is a system entryakable only by the
“ super-uset'(belon) which creates an empty directoris indicated abee, directories are expected tovgaentries

for“.”and “..”. The command which creates a directoryvisied by the super-user and has the setioskit
set. Afterit checks its imoker's authorization to create the specified directdtrgreates it and makes the entries for
“ .H and H..".

Since anyone may set the set-usebit on one of his own files, this mechanism is generatiilable without ad-
ministratve intervention. for example, this protection scheme easily solvesith@ accounting problem posed in

UNIX Time-Sharing System - 5

[71.

The system recognizes one particular us€that of the ‘super-user) as exempt from the usual constraints on
file access; thus (foxample) programs may be written to dump and reload the file system without unwanted inter
ference from the protection system.

3.6 1/O calls

The system calls to do I/O are designed to eliminate the differences between the varomssahel styles of ac-
cess. Therés no distinction betweerrandom’ and “sequential’ | /O, nor is aw logical record size imposed by the
system. Thesize of an ordinary file is determined by the highest byte written on it; no predetermination of the size
of a file is necessary or possible.

To illustrate the essentials of 1/0 inNix, some of the basic calls are summarized Welo an anornymous lan-
guage which will indicate the required parameters without getting into the complexities of machine language pro-
gramming. Eacleall to the system may potentially result in an error return, which for simplicity is not represented
in the calling sequence.

To read or write a file assumed to exist alreédtdyust be opened by the following call:
filep = oper(name, flag)

Nameindicates the name of the file. An arbitrary path name mayMea.girheflag agument indicates whether the
file is to be read, written, or “updatédhat is read and written simultaneously.

The returned @luefilep is called &ile descriptor It is a small integer used to identify the file in subsequent calls
to read, write or otherwise manipulate the file.

To aeate a nw file or completely rewrite an old one, there ir@atesystem call which creates the/gi file if it
does not exist, or truncates it to zero length if it dogst.eCreatealso opens the mefile for writing and, lile open,
returns a file descriptor.

There are no user-visible locks in the file system, nor is thgreestriction on the number of users who may
have a fle open for reading or writingAlthough it is possible for the contents of a file to become scrambled when
two users write on it simultaneousiy practice difficulties do not arisélVe take the viev that locks are neither nec-
essary nor sufficient, in our environment, toverg interference between users of the same Tileey are unneces-
sary because we are not faced with large, single-file data bases maintained by independent prbegssesn-
sufiicient because locks in the ordinary sense, whereby one usewveéatptefrom writing on a file which another
user is reading, cannot peait confusion when, fonr@mple, both users are editing a file with an editor whichemak
a mpy of the file being edited.

It should be said that the system hadigieht internal interlocks to maintain the logical consisyeofcthe file
system when tev users engage simultaneously in such inenient activities as writing on the same file, creating
files in the same directqrgr deleting each othes’gpen files.

Except as indicated belp reading and writing are sequentidlhis means that if a particular byte in the filasw
the last byte written (or read), the next I/O call implicitly refers to the firstfollp byte. For each open file there is
a pointer, maintained by the system, which indicates the next byte to be read or wiittehytes are read or writ-
ten, the pointer advances byytes.

Once a file is open, the following calls may be used.
n = read (fileppuffer, count)
n = write (filep,buffer, count)

Up to countbytes are transmitted between the file specifiefli&y and the byte array specified byffer. The re-
turned aluen is the number of bytes actually transmittéd.thewrite casen is the same asountexcept undere
ceptional conditions li I/O errors or end of physical medium on special files;read, however, n may without er
ror be less thacount. If the read pointer is so near the end of the file that reamtingtcharacters would cause
reading beyond the end, only ficient bytes are transmitted to reach the end of the file; alsayttiygpelike devices

UNIX Time-Sharing System - 6

never return more than one line of input. Whemead call returns withn equal to zero, it indicates the end of the
file. For disk files this occurs when the read pointer becomes equal to the current size of thésfpessible to
generate an end-of-file from a typewriter by use of an escape sequence which depends on the device used.

Bytes written on a file &ct only those implied by the position of the write pointer and the count; no other part of
the file is changed. If the last byte lies beyond the end of the file, the file is grown as needed.

To do random (direct access) I/O it is only necessary toentoe read or write pointer to the appropriate location
in the file.

location = seekfilep, offset, base)

The pointer associated wifthep is moved to a psition offsetbytes from the beginning of the file, from the current
position of the pointeror from the end of the file, depending base Offsetmay be ngadive. For some deices

(e.g. paper tape and typewriters) seek calls are ignored. The actual offset from the beginning of the file to which the
pointer was meed is returned irlocation

3.6.1 Other I/O calls

There are sgral additional system entries having to do with I/O and with the file system which will not be dis-
cussed. Br example: close a file, get the status of a file, change the protection modewné¢hefoa file, create a
directory make a ink to an existing file, delete a file.

4. Implementation of the file system

As mentioned in §83.2 alg, a drectory entry contains only a name for the associated file and a pointer to the file
itself. Thispointer is an integer called tii@umber(for index number) of the file. When the file is accessed, its i-
number is used as an ind@to a system table (thdist) stored in a known part of the device on which the directory
resides. Thentry thereby found (the fileisnode) contains the description of the file:

. its owner;

. its protection bits;

. the physical disk or tape addresses for the file contents;

. its size;

. time of last modification;

. the number of links to the file; that is, the number of times it appears in a directory;
. a bit indicating whether the file is a directory;

. a bit indicating whether the file is a special file;

. a bit indicating whether the file is “larget ‘‘small.”

O©CoO~NOOUTD,WNPE

The purpose of aopenor createsystem call is to turn the path nameegiby the user into an i-number by search-

ing the explicitly or implicitly named directories. Once a file is open, it&cdei-numberand read/write pointer are

stored in a system table indd by the file descriptor returned by tlpenor create. Thus the file descriptor sup-

plied during a subsequent call to read or write the file may be easily related to the information necessary to access
the file.

When a ne file is created, an i-node is allocated for it and a directory entry is made which contains the name of
the file and the i-node numbeMaking a link to ansting file involves creating a directory entry with thewne
name, copying the i-number from the original file gréng incrementing the link-count field of the i-nodeemov-
ing (deleting) a file is done by decrementing the link-count of the i-node specified by its directory entry and erasing
the directory entryIf the link-count drops to 0, girisk blocks in the file are freed and the i-node is deallocated.

The space on all fixed or rerable disks which contain a file system igided into a number of 512-byte blocks
logically addressed from O up to a limit which depends on thieele Therels space in the i-node of each file for
eight device addresse# small (non-special) file fits into eight or fewer blocks; in this case the addresses of the
blocks themselves are storeléor large (non-special) files, sen of the eight device addresses may point to indirect
blocks each containing 256 addresses for the data blocks of the file. If required, the eighiththe address of a

UNIX Time-Sharing System - 7

double-indirect block containing 256 more addresses of indirect blothss files may conceptually groto
(7+256)256512 bytes; actually tlyeare restricted to 16,777,21&@7') bytes. Onceopened, a small file (size 1 to 8
blocks) can be accessed directly large file (size 9 to 32768 blocks) requires one additional access to read belo
logical block 1792 (‘256) and tw additional references ake 1792.

The foregoing discussion applies to ordinary files. When an 1/O request is made to a file whose i-node indicates
that it is special, the last\@n device address words are immaterial, and the first is interpreted as a pair of bytes
which constitute an internalevice name These bytes specify respeety a device type and subdevice number
The deice type indicates which system routine will deal with 1/0 on that device; the subdevice number selects, for
example, a disk dvie dtached to a particular controller or one ofesal similar typewriter interfaces.

In this environment, the implementation of tmeuntsystem call (83.4) is quite straightfaawd. Mount main-
tains a system table whose argument is the i-number and device name of the ordinary file specified thoing,the
and whose corresponding value is the device name of the indicated special file. This table is searched for each (i-
number device)-pair which turns up while a path name is being scanned duriogearor create;if a match is
found, the i-number is replaced by 1 (which is the i-number of the root directory on all file systems), anit¢he de
name is replaced by the table value.

To the userboth reading and writing of files appear to be synchronous andfardd. Thais, immediately after
return from aread call the data arevailable, and coversely after awrite the users workspace may be reuseth
fact the system maintains a rather complicateifebing mechanism which reduces greatly the number of 1/0O opera-
tions required to access a file. Supposerite call is made specifying transmission of a single bydeux will
search its bffers to see whether the affected disk block currently resides in core memory; if not, it will be read in
from the deice. Thenthe affected byte is replaced in th&ffer and an entry is made in a list of blocks to be writ-
ten. Thereturn from thewrite call may then ta& dace, although the actual I/O may not be completed until a later
time. Cowersely, if a single byte is read, the system determines whether the secondary storage block in which the
byte is located is already in one of the systemffers; if so, the byte can be returned immediatéiyot, the block
is read into a buffer and the byte picked out.

The system recognizes when a program has made accesses to sequential blocks of a file, and asynchronously pre-
reads the next blockThis significantly reduces the running time of most programs while adding little to system
overhead.

A program which reads or writes files in units of 512 bytes has an advantgepoogram which reads or writes
a dngle byte at a time, but the gain is not immense; it comes mainly fromvdltace of systemverhead. Apro-
gram which is used rarely or which does no great volume of I/O may quite reasonably read and write in units as
small as it wishes.

The notion of the i-list is an unusual featureusix. In practice, this method of ganizing the file system has
proved quite reliable and easy to deal witfio the system itself, one of its strengths is the fact that each file has a
short, unambiguous name which is related in a simpleta the protection, addressing, and other information need-
ed to access the file. It also permits a quite simple and rapid algorithm for checking the consfistdife system,
for example verification that the portions of eachicke containing useful information and those free to be allocated
are disjoint and together exhaust the space on thieedeThisalgorithm is independent of the directory hiergrch
since it need only scan the linearlygamized i-list. At the same time the notion of the i-list induces certain peeuliar
ities not found in other file systemganizations. Br example, there is the question of who is to be charged for the
space a file occupies, since all directory entries for a fite Epual status.Chaging the owner of a file is unfair in
general, since one user may create a file, another may link to it, and the first user may delete the file. The first user is
still the owner of the file, but it should be charged to the second Tkersimplest reasonably fair algorithm seems
to be to spread the charges equally among users widihies to a file. The current version ofiix avads the is-
sue by not charging griees at all.

UNIX Time-Sharing System - 8

4.1 Efficiency of the file system

To provide an indication of thewerall efficiengy of uNix and of the file system in particuléimings were made
of the assembly of a 8848-line program. The assemhbly nyn alone on the machine; the total clock time was 32
seconds, for a rate of 276 lines per secohide time was divided as follows: 66% assembjecetion time, 21%
system gerhead, 13% disk wait timeWe will not attempt ag interpretation of these figures noryasomparison
with other systems, but merely note that we are generally satisfied withethé performance of the system.

5. Processes and images

An imageis a computerxecution enironment. Itincludes a core image, general regisi@ugs, status of open
files, current directory and the éik Animage is the current state of a pseudo-computer.

A processs the aecution of an image. While the processorisaeiting on behalf of a process, the image must
reside in core; during thexecution of other processes it remains in core unless the appearance ovarhigbibr-
priority process forces it to be swapped out to the fixed-head disk.

The user-core part of an image is divided into three logigahseats. Therogram text segment begins at loca-
tion O in the virtual address space. Durixgaaition, this segment is write-protected and a singlg obfi is shared
among all processegeeuting the same program. At the first 8K byte boundaryelfee program text segment in
the virtual address spacedires a non-shared, writable data segment, the size of which may be extended by a system
call. Startingat the highest address in the virtual address space is a stgoknsewhich automatically gnes
downward as the hardwasetack pointer fluctuates.

5.1 Processes
Except whileuNix is bootstrapping itself into operation, annprocess can come into existence only by use of the
fork system call:
processid = forklabel)

Whenfork is executed by a process, it splits intodindependentlyecuting processes. The evprocesses ha in-
dependent copies of the original core image, and shgrepam files. The ne processes differ only in that one is
considered the parent process: in the parent, control returns directly frdorkkhevhile in the child, control is
passed to locatiolabel. The processideturned by théork call is the identification of the other process.

Because the return points in the parent and child process are not the same, each image existiotk afi@y a
determine whether it is the parent or child process.

5.2 Pipes

Processes may communicate with related processes using the samereadamd write calls that are used for
file system I/O. The call

filep = pipg()

returns a file descriptdilep and creates an inter-process channel call@gea This channel, lik aher open files, is
passed from parent to child process in the image bfotkeall. A read using a pipe file descriptor waits until an-
other process writes using the file descriptor for the same Aipihis point, data are passed between the images of
the two processes. Neithgrocess need kmothat a pipe, rather than an ordinary file, islwed.

Although interprocess communication via pipes is a quite valuable tool (see §6.2), it is not a completely general
mechanism, since the pipe must be set up by a common ancestor of the proeasees in

5.3 Execution of programs
Another major system primite is invaked by

exeute (file,arg, ag,, ..., ag,)

which requests the system to read in axatete the program named Fie, passing it string gumentsarg, , arg,,

UNIX Time-Sharing System - 9

...,arg . All'the code and data in the process usirgcuteis replaced from théle, but open files, current directo-
ry, and inter-process relationships are unaltered. Only if theaitd| for example becausite could not be found or
because itsxecute-permission bit &s not set, does a return égtace from theexecuteprimitive; it resembles a
“ jump” machine instruction rather than a subroutine call.

5.4 Process synchronization
Another process control system call

processid = it ()

causes its caller to suspendaution until one of its children has completegaition. Thenwait returns thepro-
cessidof the terminated process. An error return is taken if the calling process has no descendants. Certain status
from the child process is alsuvalable.

5.5 Termination
Lastly,

exit (status)

terminates a process, destroys its image, closes its open files, and generally oblit&kétes the parent is notified
through thewait primitive, the indicatedstatusis available to the parentProcesses may also terminate as a result of
various illegd actions or user-generated signals (87 below).

6. The Shell

For most users, communication withnix is carried on with the aid of a program called the Shell. The Shell is a
command line interpreter: it reads lines typed by the user and interprets them as requestitet@ter programs.
In simplest form, a command line consists of the command namwéallby arguments to the command, all sepa-
rated by spaces:

command argarg, ... ag

n

The Shell splits up the command name and the arguments into separate strings. Then a file wibtmnzenes
sought;,commandnay be a path name including the' ‘character to specify grfile in the systemIf commands

found, it is brought into core andeeuted. Thearguments collected by the Shell are accessible to the command.
When the command is finished, the Shell resumesnits egecution, and indicates its readiness to accept another

command by typing a prompt character.

If file commandcannot be found, the Shell prefixes the striin/ to commandand attempts again to find the
file. Directory/bin contains all the commands intended to be generally used.

6.1 Standard 1/O

The discussion of 1/0 in 83 a® sems to imply thatvery file used by a program must be opened or created by
the program in order to get a file descriptor for the file. Prograetsted by the Shell, heever, gart of with two
open files which hze file descriptors 0 and 1. As such a program begiesugion, file 1 is open for writing, and is
best understood as the standard output file. Except under circumstances indicatethisdite is the uses’ type-
writer. Thus programs which wish to write informagia diagnostic information ordinarily use file descriptor 1.
Corversely, file O starts dfopen for reading, and programs which wish to read messages typed by the user usually
read this file.

The Shell is able to change the standard assignments of these file descriptors fromsthgpasstér printer
and leyboard. Ifone of the arguments to a command is prefixed>y; file descriptor 1 will, for the duration of
the command, refer to the file named after the. “For example,

Is

ordinarily lists, on the typewritethe names of the files in the current directorile command

UNIX Time-Sharing System - 10

Is >there

creates a file calletihereand places the listing there. Thus the arguniettiére’ means, “place output othere”
On the other hand,

ed

ordinarily enters the editowhich takes requests from the user via his typewritbe command
ed <script

interpretsscriptas a file of editor commands; thus “<scripteans, “tale input fromscript”

Although the file name followind<’’ or *‘>"" appears to be an argument to the command, in fact it is interpreted
completely by the Shell and is not passed to the command at all. Thus no special coding to handle I/O redirection is
needed within each command; the command need merely use the standard file descriptors 0 and 1 where appropri-
ate.

6.2 Filters

An extension of the standard I/O notion is used to direct output from one command to the input of @ether
guence of commands separated by vertical bars causes the Sketiute @ll the commands simultaneously and to
arrange that the standard output of each command bverddlito the standard input of the next command in the se-
guence. Thus the command line

Is | pr-2 | opr

Is lists the names of the files in the current directory; its output is paspedvtbich paginates its input with dated
headings. Thamgument “-2" means double columnLikewise the output fronpr is input toopr. This command
spools its input onto a file for off-line printing.

This procedure could ke keen carried out more clumsily by
Is >templ
pr -2 <templ >temp2
opr <temp2
followed by remual of the temporary filesln the absence of the ability to redirect output and input, a still clumsier
method would hee keen to require thlss command to accept user requests to paginate its output, to print in multi-
column format, and to arrange that its output beve®d of-line. Actually it would be surprising, and in fact un-

wise for eficiengy reasons, to expect authors of commands suéhtasprovide such a wide variety of output op-
tions.

A program such apr which copies its standard input to its standard output (with processing) is céilked. a
Some filters which we la found useful perform character transliteration, sorting of the input, and encryption and
decryption.

6.3 Command Separators; Multitasking

Another feature provided by the Shell is reldli straightforvard. Commandsaeed not be on different lines; in-
stead thg may be separated by semicolons.

Is; ed
will first list the contents of the current directpttyen enter the editor.

A related feature is more interesting. If a command is followedby, the Shell will not wait for the command
to finish before prompting again; instead, it is ready immediately to accept@menand. Br example,

as source >output &

causessourceto be assembled, with diagnostic output goingutput; no matter hav long the assembly tek, the
Shell returns immediatelyWhen the Shell does notait for the completion of a command, the identification of the

UNIX Time-Sharing System - 11

process running that command is printed. This identification may be used to wait for the completion of the com-
mand or to terminate it. The “&may be used seral times in a line:

as source >output & Is >files &

does both the assembly and the listing in the background. In the examplesusihg ‘&’ ’, an output file other
than the typewriter was primled; if this had not been done, the outputs of the various commands woelteba
intermingled.

The Shell also allows parentheses in thevaliperations. Br example
(date; Is) >x &

prints the current date and time folled by a list of the current directory onto the fileThe Shell also returns im-
mediately for another request.

6.4 The Shell as a Command; Command Files
The Shell is itself a command, and may be called reaysiSuppose filedryout contains the lines

as source
mv a.out testprog
testprog

Themvcommand causes the fieoutto be renametkstpog. A.outis the (binary) output of the assembleady to
be executed. Thusf the three lines ab@ were typed on the consokgurcewould be assembled, the resulting pro-
gram renametkestpog, and testpog executed. Wherthe lines are itryout, the command

sh <tryout
would cause the Shedhto execute the commands sequentially.

The Shell has further capabilities, including the ability to substitute parameters and to construct argument lists
from a specified subset of the file names in a directtiris dso possible toecute commands conditionally on
character string comparisons or otiséence of gien files and to perform transfers of control within filed command
sequences.

6.5 Implementation of the Shell

The outline of the operation of the Shell camri® inderstood. Mosof the time, the Shell is waiting for the us-
er to type a command. When thewakine character ending the line is typed, the Stisdhd call returns. The Shell
analyzes the command line, putting thguements in a form appropriate fexecute Thenfork is called. The child
process, whose code of course is still that of the Shell, attempts to perf@xacatewith the appropriate gu-
ments. Ifsuccessful, this will bring in and stareeution of the program whose name wagegi Meanwhile the
other process resulting from tfark, which is the parent processgaits for the child process to die. When this hap-
pens, the Shell knows the command is finished, so it types its prompt and reads the typewriter to obtain another com-
mand.

Given this framevork, the implementation of background processesvilriwhen&er a ommand line contains
“&”", the Shell merely refrains from waiting for the process which it createdeouée the command.

Happily, al of this mechanism meshes very nicely with the notion of standard input and outpuiMiies. a pro-
cess is created by ttierk primitive, it inherits not only the core image of its parent but also all the files currently
open in its parent, including those with file descriptors 0 andlhk Shell, of course, uses these files to read com-
mand lines and to write its prompts and diagnostics, and in the ordinary case its children_the command pro-
grams_inherit them automaticallyvhen an ggument with “<’’ or ‘>’ is given howevae, the offspring process, just
before it perform&xecute,makes the standard 1/O file descriptor O or 1 respegtrefer to the named file. This is
easy because, by agreement, the smallest unused file descriptor is assigned wifde & apened (orcreated); it
is only necessary to close file 0 (or 1) and open the named file. Because the process in which the command program
runs simply terminates when it is through, the association between a file specified’afiet'>"" and file descrip-
tor 0 or 1 is ended automatically when the process dies. Therefore the Shell needwtbiekactual names of the

UNIX Time-Sharing System - 12

files which are its own standard input and output, since it need re@pen them.
Filters are straightforward extensions of standard 1/O redirection with pipes used instead of files.

In ordinary circumstances, the main loop of the Shelemerminates. (Thenain loop includes that branch of
the return fronfork belonging to the parent process; that is, the branch which deat, hen reads another com-
mand line.) The one thing which causes the Shell to terminate isvelisgpan end-of-file condition on its input
file. Thus,when the Shell isxecuted as a command with argi input file, as in

sh <comfile

the commands isomfilewill be executed until the end afomfileis reached; then the instance of the Shetbked
by shwill terminate. Since this Shell process is the child of another instance of the Shellaithexecuted in the
latter will return, and another command may be processed.

6.6 Initialization

The instances of the Shell to which users type commands are thesnskildren of another process. The last
step in the initialization obNIx is the creation of a single process and thvedation (viaexecutg of a program
calledinit. The role ofinit is to create one process for each typewriter channel which may be dialed up hy a user
The various subinstancesioft open the appropriate typewriters for input and out@ihce wherinit was invoked
there were no files open, in each process the typeweaybokrd will recere file descriptor 0 and the printer file de-
scriptor 1. Each process types out a message requesting that the user logaitsandagling the typeiter, for a
reply. At the outset, no one is logged in, so each process simply hgirgdly someone types his name or other
identification. Theappropriate instance d@fit wakes up, receves the log-in line, and reads a passd file. If the
user name is found, and if he is able to supply the correct pakémit changes to the usertefault current directo-
ry, sets the process'userid to that of the person logging in, and performsegatuteof the Shell. At this point the
Shell is ready to receé commands and the logging-in protocol is complete.

Meanwhile, the mainstream pathioit (the parent of all the subinstances of itself which will later become Shells)
does await. If one of the child processes terminates, either because a Shell found an end of file or because a user
typed an incorrect name or passd, this path oiit simply recreates the defunct process, which in turn reopens the
appropriate input and output files and types another login mes$ags.a user may log out simply by typing the
end-of-file sequence in place of a command to the Shell.

6.7 Other programs as Shell

The Shell as described alois designed to allw users full access to the facilities of the system, since it will
invoke the execution of ary program with appropriate protection mode. Sometimeweher, a dfferent interface to
the system is desirable, and this feature is easily arranged.

Recall that after a user has successfully logged in by supplying his name ancrgdegverdinarily invokes the
Shell to interpret command lines. The useritry in the password file may contain the name of a program to be in-
voked dter login instead of the Shell. This program is free to interpret thesusegsages in grway it wishes.

For example, the password file entries for users of a secretarial editing system specify that thesl editmibe
used instead of the Shell. Thus when editing system users logyirar¢himside the editor and can begin work im-
mediately; also, thecan be preented from ivoking UNIX programs not intended for their usk practice, it has
proved desirable to alle a temporary escape from the editor i@@ute the formatting program and other utilities.

Several of the games (e.g., chess, blackjack, 3D tic-tac-waéphle onuNix illustrate a much more gerely re-
stricted emironment. Br each of these an entry exists in the pasdviile specifying that the appropriatange-
playing program is to bewoked instead of the Shell. People who log in as a player of one of the games find them-
selves limited to the game and unable tedtigate the presumably more interesting offeringsnox as a whole.

UNIX Time-Sharing System - 13

7. Traps

The pDR-11 hardware detects a number of program faults, such as references istem-enemoryunimple-
mented instructions, and odd addresses used wheremaderess is required. Such faults cause the processor to
trap to a system routine. When angleaction is caught, unless other arrangement& heen made, the system
terminates the process and writes the sgerage on filecore in the current directoryA dehugger can be used to
determine the state of the program at the time of the fault.

Programs which are looping, which produce anted output, or about which the user has second thoughts may
be halted by the use of timerrupt signal, which is generated by typing thaelete’ character Unless special ac-
tion has been taken, this signal simply causes the program to geasgoa without producing a core image file.

There is also guit signal which is used to force a core image to be produced. Thus programs which boop une
pectedly may be halted and the core image examined without prearrangement.

The hardware-generatedults and the interrupt and quit signals can, by request, be either ignored or caught by
the processFor example, the Shell ignores quits to yet a quit from logging the user out. The editor catches in-
terrupts and returns to its commandele Thisis useful for stopping long printouts without losingn in progress
(the editor manipulates a oppf the file it is editing). In systems without floating point hardware, unimplemented
instructions are caught and floating point instructions are interpreted.

8. Perspectve

Perhaps paradoxicallthe success afNix is largely due to theatt that it was not designed to meey arede-
fined objecties. Thefirst version was written when one of us (Thompson), dissatisfied withvéilalde computer
facilities, discwered a little-useddbP-7 and set out to create a more hospitabler@mment. Thisessentially per
sonal effort was sufficiently successful to gain the interest of the remaining author and others, and later to justify the
acquisition of theeDP-11/20, specifically to support a text editing and formatting syséénen in turn the 11/20
was autgrown, UNIX had proed useful enough to persuade management testnin thepbr-11/45. Ourgoals
throughout the effort, when articulated at allyd@ways concerned themsels with building a comfortable rela-
tionship with the machine and with exploring ideas amentions in operating system&Ve havenot been dced
with the need to satisfy someone egeguirements, and for this freedom we are grateful.

Three considerations which influenced the desigsof are visible in retrospect.

First: since we are programmers, we naturally designed the system eoitreagy to write, test, and run pro-
grams. Thenost importantgression of our desire for programming wemience was that the system was arranged
for interactve wse, &en though the original ersion only supported one uséife kelieve that a properly-designed
interactve g/stem is much more produati and satisfying to use than ‘batch” system. Morewer such a system is
rather easily adaptable to non-interaetise, while the corerse is not true.

Second: there lva dways been fairly seere size constraints on the system and its softw Gven the patrtially
antagonistic desires for reasonablécafhcy and expressie power, the size constraint has encouraged not only
economy but a certain glance of design. This may be a thinly disguised version of shb/ation through sdiér-
ing” philosoply, but in our case it worked.

Third: nearly from the start, the system was able to, and did, maintain itself. This fact is more important than it
might seem. If designers of a system are forced to use that sysiequitidy become ware of its functional and
superficial deficiencies and are strongly wettd to correct them before it is too lat8ince all source programs
were alvays available and easily modified on-line, we were willing to revise and rewrite the system and irsoftw
when nev ideas were wented, discuered, or suggested by others.

The aspects ofinix discussed in this paper exhibit clearly at least the firstdfthese design considerations.
The interface to the file system, fotaenple, is extremely ceenient from a programming standpoint. Thevést
possible interface &l is designed to eliminate distinctions between thgous devices and files and between direct
and sequential access. No large “access méthodfines are required to insulate the programmer from the system
calls; in fact all user programs either call the system directly or use a small library program, only tens of instructions
long, which buffers a number of characters and reads or writes them all at once.

UNIX Time-Sharing System - 14

Another important aspect of programming \warience is that there are rfodntrol blocks’ with a complicated
structure partially maintained by and depended on by the file system or other systef@eradisally speaking, the
contents of a program’'aldress space are the property of the program, and weetfed to aoid placing restric-
tions on the data structures within that address space.

Given the requirement that all programs should be usable witffileror device as input or output, it is also desir
able from a spacef@fiency standpoint to push device-dependent considerations into the operating system itself.
The only alternaties em to be to load routines for dealing with each device with all programs, whigheissee
in space, or to depend on some means of dynamically linking to the routine appropriate twieachtdm it is ac-
tually needed, which is expewsigather in overhead or in hardware.

Likewise, the process control scheme and command interfaeepaved both cowenient and dicient. Since
the Shell operates as an ordinayappable user program, it consumes no wiregktigpace in the system proper
and it may be made aswerful as desired at little cost. In particylgiven the frame&vork in which the Shelle
ecutes as a process which spawns other processes to perform commands, the notions of I/O redirection, background
processes, command files, and user-selectable system interfaces all become essentially trivial to implement.

8.1 Influences

The success afnix lies not so much in meinventions but rather in the full exploitation of a carefully selected
set of fertile ideas, and especially in iy that thg can be leys to he implementation of a small yet powerful op-
erating system.

The fork operation, essentially as we implemented it, was present in thel&etikne sharing systefn On a
number of points we were influenced by Multics, which suggested the particular form of the I/O systemndalls
both the name of the Shell and its general functidige notion that the Shell should create a process for each com-
mand was also suggested to us by the early design of Multics, although in that sysdsrtatendropped for féef
cieng/ reasons. Aimilar scheme is used B¥ENEX,

9. Statistics

The following numbers are presented to suggest the scale of our opefdimse of our users notvadved in
document preparation tend to use the system for prograelogdment, especially languageovk. Thereare fav
important “applications’programs.

Overall, we hae

100 usepopulation

14 maximunsimultaneous users

380 directories

4800 files

66300 512-bytsecondary storage blocks used

There is a‘background’ process that runs at thealest possible priority; it is used to soak uy &fle cputime.
It has been used to produce a million-digit approximation to the comsnand is ne solving all rook-and-pan
vs. rook chess endges. Notounting this background work, weesage daily

2400 commands
55 cpuhours

100 connechours
32 different users
100 logins

AcknowledgementsWe ae grateful to R.H. Canadal.L. Cherry and L.E. McMahon for their contributions to
UNIX. We ae particularly appreciate d the irventiveness, thoughtful criticism, and constant support of R. Morris,
M.D. Mcllroy, and J.F Ossanna.

UNIX Time-Sharing System - 15

References

1. Digital Equipment CorporationPDP-11/40 Processor Handbodl 972), pDP-11/45 Processor Handbook
(1971), ancPDP-11/70 Processor Handbogk975).

2. Deutschl.P., and Lampson, B.WAnN online editor. Comm. ACM 1012 (Dec. 1967), 793-799, 803.

3. RichardsM. BcpL: A tool for compiler writing and system programming. Proc. AFIPS 1969 SJCC, \Vol. 34,
AFIPS Press, Montvale, N.J., pp. 557-566.

4, McClure,R.M. TMG—A syntax directed compileProc. ACM 20th Nat. Conf., ACM, 1965, MeYork, pp.
262-274.

5. Hall, A.D. TheM6 macroprocessorComputing Science Tech. Rep. #2, Bell Telephone Laboratories, 1969.

6. Ritchie,D.M. Creference manual. Unpublished memorandum, Bell Telephone Laboratories (1973).

7. Aleph-null.Computer RecreationsSoftwae Practice and Experience 2,(Apr.-June 1971), 201-204.

8. Deutch,L.P. and Lampson, B.W sbs 930 time-sharing system preliminary reference manu2oc.
30.10.10, ProjeaseNIE, Univ. Cal. at Berkelg (Apr. 1965).

9. FeiertagR.J., and Qganick, E.l. The Multics input-output system. Proc. Third Symposium on Operating
Systems Principles. Oct. 18-20, 1971, ACMwN¥ork, pp. 35-41.

10. Bobrav, D.G., Burchfiel, J.D., Murph D.L., and Tomlinson, R.STENEX, a paged time sharing system for

thepDR-10. Comm. ACM 153 (March 1972) 135-143.

