A.OUT (V) 9/9/73 A.OUT(V)

NAME
a.out— assembler and link editor output

DESCRIPTION
A.out is the output file of the assembles and the link editotd. Both programs maka.out executable if
there were no errors and no unresolved external references.

This file has four sections: a headiie program and dataxte a symbol table, and relocation bits (in that
order). Thdast two may be empty if the program was loaded with the™ option ofld or if the symbols
and relocation ha keen remwed by strip.

The header alays contains 8 words:

A magic number (407, 410, or 411(8))

The size of the program text segment

The size of the initialized portion of the data segment

The size of the uninitialized (bss) portion of the data segment
The size of the symbol table

The entry location (alays O at present)

Unused

A flag indicating relocation bits kia been suppressed

O~NOUITDAWN P

The sizes of each segment are in bytes but\are €lhesize of the header is not included iryaf the
other sizes.

When a ile produced by the assembler or loader is loaded into corexdouteon, three logical ggnents

are set up: the text segment, the datanemt (with uninitialized data, which startg a$ dl 0, following
initialized), and a stack. The text segmergibs at O in the core image; the header is not loaded. If the
magic number (ard 0) is 407, it indicates that the text segment is not to be write-protected and shared, so
the data segment is immediately contiguous with the teheet. Ifthe magic number is 410, the data
segment begins at the first 0 mod 8K byte boundary following the tgxheet, and the text segment is not
writable by the program; if other processes aeeting the same file, tiyewill share the text ggment. If

the magic number is 411, the text segment is again pure, write-protected, and shared, are imstreo-

tion and data space are separated; the text and data segment both begin at loSatoth€.11/45 hand-

book for restrictions which apply to this situation.

The stack will occupthe highest possible locations in the core image: from 177776(8) and growing do
wards. Thestack is automatically extended as required. The dgtaes is only extended as requested by
thebreak system call.

The start of the text segment in the file is 20(8); the start of the data segment,i@t29s&e of the)
the start of the relocation information is 20#%,; the start of the symbol table is 20+AS) if the reloca-
tion information is present, 2045, if not.

The symbol table consists of Gevd entries. The first four words contain the ASCII name of the symbol,
null-padded. Thaext word is a flag indicating the type of symbol. The following values are possible:

00 undeihed symbol

01 absolutesymbol

02 text segment symbol

03 datasegment symbol

37 file name symbol (produced by Id)
04 bsssegment symbol

40 undeihed external (.globl) symbol
41 absolutexternal symbol

42 tet segment external symbol

43 datasegment external symbol

44 bsssegment external symbol

Values other than thosevgn above may occur if the user has defined some of his own instructions.

A.OUT (V) 9/9/73 A.OUT(V)

The last word of a symbol table entry contains the value of the symbol.

If the symbols type is undefined»aernal, and the value field is non-zero, the symbol is interpreted by the
loaderld as the name of a common region whose size is indicated by the value of the symbol.

The value of a word in the text or data portions which is not a reference to ameddeternal symbol is
exactly that value which will appear in core when the filexiecated. Ifa word in the text or data portion
involves a reference to an undefinedieenal symbol, as indicated by the relocation bits for that word, then
the value of the wrd as stored in the file is an offset from the associated external symbol. When the file is
processed by the link editor and thdeenal symbol becomes defined, the value of the symbol will be
added into the word in the file.

If relocation information is present, it amounts to one word padvef program text or initialized data.
There is no relocation information if the “suppress relocatidag in the header is on.

Bits 3-1 of a relocation word indicate the segment referred to bysthertelata word associated with the
relocation word:

00 indicateshe reference is absolute

02 indicateghe reference is to the text segment

04 indicateghe reference is to initialized data

06 indicateghe reference is to bss (uninitialized data)

10 indicateghe reference is to an undefined external symbol.

Bit O of the relocation word indicatesah that the reference is reladi © the pc (e.g. “clr x™); if off, that
the reference is to the actual symbol (e.g., “clr *$x”).

The remainder of the relocation word (bits 15-4) contains a symbol number in the caterral eefer
ences, and is unused otherwise. The first symbol is numbered 0, the second 1, etc.

SEE ALSO
as (1), Id (1), strip (1), nm (1)

ARCHIVE (V) 9/10/73 ARCHIVE(V)

NAME
ar— archie (ibrary) file format
DESCRIPTION
The archie mommandar is used to combine geral files into one.Archives ae used mainly as libraries to
be searched by the link-editiat
A file produced byar has a magic number at the start, fokal by the constituent files, each preceded by a
file header The magic number is 177555(8) (it was chosen to be unlikely to ocguhare else).The
header of each file is 16 bytes long:
0-7 file name, null padded on the right
8-11 modifcation time of the file
12 useiD of file owner
13 file mode
14-15 fle size
Each file begins on a word boundary; a null byte is inserted betwesriffnecessary Nevatheless the
size gve reflects the actual size of the file exclesif padding.
Notice there is no provision for empty areas in an aecfie.
SEE ALSO
ar (1), Id (1)
BUGS

Names are only 8 characters, not 14. More important, thetesisnigh room to store the proper mode, so
ar always extracts in mode 666.

ASCII (V) 6/12/72 ASCI(V)

NAME
ascii— map of ASCII character set

SYNOPSIS
cat /usr/pub/ascii

DESCRIPTION
Ascii is a map of the ASCII character set, to be printed as needed. It contains:

000 nul	001 h	002stx	003 etx	004 eot	005 enq	006 ack	007 bel
010 bs	011 ht	012 nl	013 vt	014 np	015 cr	016 0	017 si
020 dle	021 dcl	®2 dc2	@3 dc3	@4 dc4	@5 nak	®6 syn	027 etb
030 can	@1 en	032 2ub	033esc	034 fs	035 g	036 rs	037 ws
040 sp [041 !	042 "	043 #	044 $	045 %	046 &	047 °	

|
[050 (|051) |052 * |053 + |054 , |055 - |056 . |057 / |
[060 0 |061 1]|062 2 |063 3 |064 4 |065 5 |066 6 |067 7 |
|070 8 |071 9 |072 : |073 : |074 < |075 = |076 > |077 2 |
[100 @|101 A |102 B |103 C |104 D |[105 E |106 F [107 G |
[110 H |111 | |112 J |113 K |114 L |115 M |116 N |[117 O]
[120 P |121 Q|122 R |123 S |124 T |125 U |126 V |127 W |
[130 X |131 Y |132 Z |133 [|134 \ |135] |136 ~ |137 _ |
[140 ~ |141 a |142 b |143 c |144 d |[145 e |[146 f |147 g |
[150 h |151 i |152 j |153 k |154 | |[155 m |156 n [157 o |
[160 p |161 q |162 r |163 s |164 t 165 u |166 v [167 w |
[170 x |171 vy |172 z |173 { |174 | |175 } |176 ~ |177 del|

FILES
found in /usr/pub

CORE (V) 2/11/75 COREV)

NAME
core- format of core image file
DESCRIPTION
UNIX writes out a core image of a terminated process whegmfwvarious errors occurSeesignal (I1) for
the list of reasons; the most common are memory violationgdillestructions, bus errors, and ugener-
ated quit signals. The core image is calfedre” and is written in the processivorking directory (pro-
vided it can be; normal access controls apply).
The first 1024 bytes of the core image are ayafihe systens per-user data for the process, including the
registers as thewere at the time of thea@ilt. Theremainder represents the actual contents of thesuser’
core area when the core image was written. If tlie gegment is write-protected and shared, it is not
dumped; otherwise the entire address space is dumped.
The format of the information in the first 1024 bytes is described bystnestructure of the systenilhe
important stuf not detailed therein is the locations of thgiséers. Herere their ofsets. Theparenthe-
sized numbers for the floating registers are used if the floating-point hardware is in single precision mode,
as indicated in the status register.
fpsr 0004
frO 0006 (0006)
frl 0036 (0022)
fr2 0046 (0026)
fr3 0056 (0032)
frd 0016 (0012)
fr5 0026 (0016)
r0 1772
rl 1766
r2 1750
r3 1752
r4 1754
r5 1756
sp 1764
pc 1774
ps 1776
In general the debuggedb (1) andcdb (1) are suficient to deal with core images.
SEE ALSO

cdb (1), db (1), signal (lI)

DIRECTORY (V) 9/10/73 DIRECDRY (V)

NAME
dir — format of directories

DESCRIPTION
A directory behaes exactly like an adinary file, s&e that no user may write into a directorVhe fact that
a file is a directory is indicated by a bit in the flagnd of its i-node entry Directory entries are 16 bytes
long. Thefirst word is the i-number of the file represented by the gifitnon-zero; if zero, the entry is
empty.

Bytes 2-15 represent the (14-character) file name, null padded on the right. These bytes are not cleared for
empty slots.

By corvention, the first tvo entries in each directory are for™and “..”. The first is an entry for the di-
rectory itself. The second is for the parent directdiye meaning of .” i s nodified for the root directory
of the master file system and for the root directories of vahie file systems. In the first case, there is no
parent, and in the second, the system does not peifrtifvate references. Therefore in both cases *
has the same meaning a8 .

SEE ALSO
file system (V)

DUMP (V) 2/11/75 DUMR(V)

NAME
dump-incremental dump tape format

DESCRIPTION
The dump andrestor commands are used to write and read incremental dump magnetic tapes.

The dump tape consists of blocks of 512-bytes each. The first block has the following structure.

struct {

int isize;

int fsize;

int date[2];

int ddate[2];

int tsize;
2
Isize, andfsize are the corresponding values from the super block of the duntpegdtem. (See file sys-
tem (V).) Dateis the date of the dumpDdate is the incremental dump date. The incremental dump con-
tains all files modified betweeddate anddate. Tsize is the number of blocks per reel. This block check-
sums to the octal value 031415.

Next there are enough whole tape blocks to contain one word per file of the dumped file Shisiens.
isize divided by 16 rounded to the next higher gege The first word corresponds to i-node 1, the second to
i-node 2, and so forth. If a word is zero, then the corresponilingxsts, but was not dumpeéWwas not
modified afterddate) If the word is—1, the fle does not xist. Othervalues for the word indicate that the
file was dumped and the value is one more than the number of blocks it contains.

The rest of the tape contains for each dumped file a header block and the data blocks filem The f
header contains an exact gay the i-node (sedlé system (V)) and also checksums to 031415. Thé ne
to-last word of the block contains the tape block nurrioegid in (unimplemented) rewery after tape er
rors. Thenumber of data blocks per file is directly specified by the contostivior the file and indirectly
specified by the size in the i-node. If these numbers differfile was dumped with a ‘phase error’.

SEE ALSO
dump (VIII), restor (VIII), file system(V)

FILE SYSTEM(V) 2/9/75 FILESYSTEM (V)

NAME
fs — format of file system volume

DESCRIPTION
Every file system storage volume (e.g. RF disk, RK disk, RP disk, DECtape reel) has a common format for
certain vital information.Every such volume is dided into a certain number of 256 word (512 byte)
blocks. BlockO is unused and isvailable to contain a bootstrap program, pack label, or other information.

Block 1 is thesuper block. Starting from its first word, the format of a super-block is

struct {
int isize;
int fsize;
int nfree;
int free[100];
int ninode;

int inode[100];
char flock;

char ilock;
char fmod;
int time[2];

2

Isize is the number of blocks deted to the i-list, which starts just after the super-block, in blocksze

is the first block not potentiallyvailable for allocation to aile. Thesenumbers are used by the system to
check for bad block numbers; if dimpossible’ block number is allocated from the free list or is freed, a
diagnostic is written on the on-line consoMoreover, the free array is cleared, so as tovpre further al-
location from a presumably corrupted free list.

The free list for each alume is maintained as folis. The free array contains, infreg[1], ... ,

free[nfree-1], up to 99 numbers of free block® 0] is the block number of the head of a chain of
blocks constituting the free list. The first word in each free-chain block is the number (up to 100) of free-
block numbers listed in the next 100 words of this chain memder first of these 100 blocks is the link

to the next member of the chaifio dlocate a block: decremenfree, and the ne block isfreg[nfree]. If

the nev block number is 0, there are no blocks left, seegn eror. If nfree became 0, read in the block
named by the e block numbey replacenfree by its first word, and copthe block numbers in the xte

100 words into théree array To free a block, check iffreeis 100; if so, cop nfree and thefree array into

it, write it out, and setfree to 0. In aly event setfreg[nfree] to the freed blocls number and increment

nfree.

Ninode is the number of free i-numbers in timede array To dlocate an i-node: ifinode is greater than O,
decrement it and retuimode[ninode]. If it was O, read the i-list and place the numbers of all free inodes
(up to 100) into thénode array then try agin. To free an i-node, pxaded ninode is less than 100, place

its number intainode] ninode] and incrementinode. If ninode is already 100, dohbother to enter the
freed i-node into antable. Thislist of i-nodes is only to speed up the allocation process; the information
as to whether the inode is really free or not is maintained in the inode itself.

Flock andilock are flags maintained in the core gay the file system while it is mounted and theatues

on disk are immaterial. The valuefafod on disk is lilewise immaterial; it is used as a flag to indicate that

the supeblock has changed and should be copied to the disk during the next periodic update of file system
information.

Time is the last time the super-block of the file system was changed, and is a double-precision representa-
tion of the number of seconds thavéaapsed since 0000 Jan. 1 1970 (GMDuring a reboot, théme
of the super-block for the root file system is used to set the sygsittem’ of the time.

I-numbers begin at 1, and the storage for i-nodgmben block 2. Also, i-nodes are 32 bytes long, so 16

of them fit into a block. Therefore, i-nodes located in blocki(+ 31) / 16,and begins 3%(i + 31) (mod

16) bytes from its start. I-node 1 is reserved for the root directory of the file system, but no other i-number
has a built-in meaning. Each i-node representsitmeTheformat of an i-node is as follows.

FILE SYSTEM(V) 2/9/75 FILESYSTEM (V)

struct {
int flags; /* +0: see bela */
char nlinks; /* +2: number of links to file */
char uid; /* +3: user ID of owner */
char gid; /* +4: group ID of owner */
char size0; /* +5: high byte of 24-bit size */
int sizel,; /* +6: low word of 24-bit size */
int addr[8]; /* +8: block numbers or device number */
int actime[2]; [* +24: time of last access */
int modtime[2]; [* +28: time of last modification */
2

The flags are as follows:

100000 i-nodés allocated
060000 2-bifile type:
000000 plairfile
040000 directory
020000 charactaype special file
060000 block-typspecial file.
010000 lage file
004000 seuser-ID on gecution
002000 segroup-ID on &ecution
000400 readowner)
000200 write(owner)
000100 ®ecute (owner)
000070 readyrite, execute (group)
000007 readyrite, execute (others)

Special files are recognized by their flags and not by i-numidslock-type special file is basically one

which can potentially be mounted as a file system; a character-type special file cannot, though it is not nec-
essarily charactesriented. Br special files the high byte of the first address word dpsdifie type of de-

vice; the lav byte specifies one of geral devices of that type. The device type numbers of block and char
acter special fileswarlap.

The address words of ordinary files and directories contain the numbers of the blocksilen (thé fs
small) or the numbers of indirect blocks (if the file igkr Bytenumbem of a file is accessed as falis.
N is divided by 512 to find its logical block number ($ayin the fle. If the file is small (flag 010000 is
0), thenb must be less than 8, and the physical block numkzeidig b] .

If the file is lage,b is divided by 256 to yield. If i is less than 7, theaddr[i] is the physical block hum-
ber of the indirect block. The remainder from the division yields thelwn the indirect block which con-
tains the number of the block for the sought-for byte.

If i is equal to 7, then the file has becom&alalge (huge), anaddr[7] is the address of a first indirect
block. Eachword in this block is the number of a secondeléndirect block; each word in the second-le
el indirect blocks points to a data block. Notice thdteelage files are not marked byymode bit, lt
only by haing addr[7] non-zero; and that although this schemewadldor more than 25&@56x512 =
33,554,432 bytes per file, the length of files is stored in 24 bits so in practite @i be at most
16,777,216 bytes long.

For block b in a file to &ist, it is not necessary that all blocks less tharist. A zero block number either
in the address words of the i-node or in an indirect block indicates that the corresponding bloslerhas ne
been allocated. Such a missing block reads as if it contained all zero words.

SEE ALSO
icheck, dcheck (VIII)

GREEK (V) 10/31/72 GREEKV)

NAME
greek- graphics for extended TTY-37 type-box

SYNOPSIS
cat /usr/pub/greek

DESCRIPTION
Greek gives the mapping from ascii to the “shift ougraphics in effect between SO and Sl on model 37
Teletypes with a 128-character type-box. It contains:
alpha a A beta s B gamma y \
GAMMA r G delta 6 D DELTA AW
epsilon e S Zeta { Q ea n N
THETA e T theta g O lambda A L
LAMBDA AN E mu u M nu v @
Xi & X pi o J A n P
rho p K sigma o Y SIGMA > R
tau r | phi ¢ U PHI o F
psi vy V PSI Y H omega w C
OMEGA Q Zz nabla O I not -
partial 0] integral |

SEE ALSO
ascii (VII)

-10-

GROUP (V) 2/10/75 GROUP (V)

NAME
group— group file
DESCRIPTION
Group contains for each group the following information:
group name
encrypted password
numerical group 1D
a oomma separated list of all users allowed in the group
This is an ASCllife. Thefields are separated by colons; Each group is separated from the nextby a ne
line. If the password field is null, no password is demanded.
This file resides in directory /etc. Because of the encrypted padswit can and does Veageneral read
permission and can be used, for example, to map numerical grao lBmes.
FILES
/etc/group
SEE ALSO

newgrp (1), login (1), crypt (Ill), passwd (I)

-11 -

MTAB (V) 1/6/74 MTAB (V)

NAME
mtab— mounted file system table
DESCRIPTION
Mtab resides in directonjetc and contains a table of devices mounted byrbient command. Umount re-
moves entries.
Each entry is 64 bytes long; the first 32 are the null-padded name of the place where the special file is
mounted; the second 32 are the null-padded name of the sjiecidltfespecial file has all its directories
stripped avay; that is, gerything through the last “/is thrown avay.
This table is present only so people can look at it. It does not matteut if there are duplicated entries
nor toumount if a name cannot be found.
FILES
/etc/mtab
SEE ALSO
mount (VIII), umount (VIII)
BUGS

-12 -

PASSWD (V) 9/10/73 RSSWD (V)

NAME
passwd- password file

DESCRIPTION
Passwd contains for each user the following information:

name (login name, contains no upper case)
encrypted password

numerical user ID

numerical group ID (for ng, dways 1)

GCOS job humbebox numberoptional GCOS user-id
initial working directory

program to use as Shell

This is an ASCllife. Eachfield within each uses’entry is separated from the next by a colon. The GCOS
field is used only when communicating with that system, and in other installations can contigsireeu
information. Eactuser is separated from the next by whiee. If the password field is null, no passa

is demanded; if the Shell field is null, the Shell itself is used.

This file resides in directory /etc. Because of the encrypted padswit can and does Ve general read
permission and can be used, for example, to map numerical usé¢o fRimes.

FILES
letc/passwd

SEE ALSO
login (1), crypt (ll1), passwd (1), group (V)

-13-

TABS (V) 6/15/72 ABS (V)

NAME
tabs— set tab stops

SYNOPSIS
cat /usr/pub/tabs

DESCRIPTION
Printing this file on a suitable terminal sets tab stugsye8 columns. Suitable terminals include thedeF
type model 37 and the GE TermiNet 300.

These tab stop settings are desirable because UNIX assumes them in calculating delays.

-14 -

TP (V) 9/10/73 TRV)

NAME
tp — DEC/mag tape formats

DESCRIPTION
The commandp dumps files to and extracts files from DECtape and magtépe.formats of these tapes

are the same except that magtape® tterger directories.
Block zero contains a cgpf a 4and-alone bootstrap program. See boot procedures (VIII).

Blocks 1 through 24 for DECtape (1 through 62 for magtape) contain a directory of thé@ hape.are 192
(resp. 496) entries in the directory; 8 entries per block; 64 bytes per Eatly entry has the following for
mat:

path name 32 bytes
mode Z2bytes
uid 1byte

gid 1byte
unused Dbyte
size 3bytes
time modifed 4bytes
tape address 2 bytes
unused 1lbytes
check sum 2 bytes

The path name entry is the path name of the file when put on the tape. If the pathname starts with a zero
word, the entry is emptylt is at most 32 bytes long and ends in a null byode, uid, gid, size and time
modified are the same as described under i-nodes (file system Tki§).tape address is the tape block
number of the start of the contents of the. f Every file starts on a block boundaryhe file occupies
(size+511)/512 blocks of continuous tapehe checksum entry has a value such that the sum of the 32
words of the directory entry is zero.

Blocks 25 (resp. 63) on argailable for file storage.
A fake entry (see tp (1)) has a size of zero.

SEE ALSO
file system (V), tp ()

-15-

TTYS (V) 2/11/75 TTYS V)

NAME
ttys — typewriter initialization data

DESCRIPTION
Thettys file is read by thénit program and speddfs which typewriter special files are toveaa pocess
created for them which will alle people to log in. It consists of lines of 3 characters each.
The frst character is either ‘0’ or ‘1’; the former causes the line to be ignored, the latter causes it to be ef-
fective. The second character is the last character in the name of a typewriter;r&fgys to theife
‘/devl/ttyx’. Thethird character is used as alg@ament to theetty program, which performs such tasks as
baud-rate recognition, reading the login name, and cdbigig. For normal lines, the character is ‘0’; oth-
er characters can be used, faample, with hard-wired terminals where speed recognition is unnecessary
or which hae gecial characteristics. (Getty will & be fxed in such cases.)

FILES
letclttys

SEE ALSO

init (VII1), getty (VIII), login (1)

-16 -

UTMP (V) 9/10/73 UTMR(V)

NAME
utmp - user information

DESCRIPTION
This file allovs one to disoger information about who is currently using UNIX. The file is binary; each
entry is 16(10) bytes longThe first eight bytes contain a useldgin name or are null if the table slot is
unused. Théow order byte of the next @rd contains the last character of a typewriter name. The next tw
words contain the usearlogin time. The last word is unused.

FILES
letc/utmp

SEE ALSO

init (V1I1) and login (1), which maintain the file; who (1), which interprets it.

-17 -

WTMP (V) 2/22/74 WTMRAV)

NAME
wtmp — user login history

DESCRIPTION
This file records all logins and logouts. Its format is exactlg limp (V) except that a null user name in-
dicates a logout on the associated witer. Furthermore, the typewriter name ™ indicates that the system
was rebooted at the indicated time; the adjacent pair of entries with typewriter names ‘|’ and ‘}’ indicate the
system-maintained time just before and just aftdate command has changed the systeidea of the
time.
Wtmp is maintained by login (1) and init (VIII). Neither of these programs creates the file, so if it is re-
moved record-keeping is turnedfoflt is summarized by ac (VIII).

FILES
/usr/fadm/wtmp

SEE ALSO

utmp (V), login (1), init (VIII), ac (VIII), who (1)

-18-

