
-

INTRO (II) 11/5/73 INTRO (II)

INTRODUCTION TO SYSTEM CALLS

Section II of this manual lists all the entries into the system.In most cases two calling sequences are specified, one
of which is usable from assembly language, and the other from C.Most of these calls have an error return. From
assembly language an erroneous call is always indicated by turning on the c-bit of the condition codes. The pres-
ence of an error is most easily tested by the instructionsbes andbec (‘‘branch on error set (or clear)’’). Theseare
synonyms for thebcs andbcc instructions.

From C, an error condition is indicated by an otherwise impossible returned value. Almostalways this is−1; the in-
dividual sections specify the details.

In both cases an error number is also available. In assembly language, this number is returned in r0 on erroneous
calls. FromC, the external variableerrno is set to the error number. Errno is not cleared on successful calls, so it
should be tested only after an error has occurred.There is a table of messages associated with each error, and a rou-
tine for printing the message. Seeperror (III).

The possible error numbers are not recited with each writeup in section II, since many errors are possible for most of
the calls. Here is a list of the error numbers, their names inside the system (for the benefit of system-readers), and
the messages available usingperror. A short explanation is also provided.

0 − (unused)

1 EPERM Notowner and not super-user
Typically this error indicates an attempt to modify a file in some way forbidden except to its owner. It is also
returned for attempts by ordinary users to do things allowed only to the super-user.

2 ENOENT Nosuch file or directory
This error occurs when a file name is specified and the file should exist but doesn’t, or when one of the direc-
tories in a path name does not exist.

3 ESRCH Nosuch process
The process whose number was given to signal does not exist, or is already dead.

4 EINTR Interruptedsystem call
An asynchronous signal (such as interrupt or quit), which the user has elected to catch, occurred during a
system call. If execution is resumed after processing the signal, it will appear as if the interrupted system
call returned this error condition.

5 EIO I/O error
Some physical I/O error occurred during aread or write. This error may in some cases occur on a call fol-
lowing the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist, or beyond the limits of the device. It may al-
so occur when, for example, a tape drive is not dialled in or no disk pack is loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 512 bytes (counting the null at the end of each argument) is presented toexec.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate permissions, does not start with one
of the magic numbers 407 or 410.

9 EBADF Badfi le number
Either a file descriptor refers to no open file, or a read (resp. write) request is made to a file which is open on-

- 1 -

-

INTRO (II) 11/5/73 INTRO (II)

ly for writing (resp. reading).

10 ECHILD No children
Wait and the process has no living or unwaited-for children.

11 EAGAIN No more processes
In a fork, the system’s process table is full and no more processes can for the moment be created.

12 ENOMEM Not enough core
During anexec or break, a program asks for more core than the system is able to supply. This is not a tempo-
rary condition; the maximum core size is a system parameter. The error may also occur if the arrangement of
text, data, and stack segments is such as to require more than the existing 8 segmentation registers.

13 EACCES Permissiondenied
An attempt was made to access a file in a way forbidden by the protection system.

14 − (unused)

15 ENOTBLK Block device required
A plain file was mentioned where a block device was required, e.g. inmount.

16 EBUSY Mountdevice busy
An attempt to mount a device that was already mounted or an attempt was made to dismount a device on
which there is an open file or some process’s current directory.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g.link.

18 EXDEV Cross-device link
A l ink to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a device; e.g. read a write-only device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in a path name or as an argument to
chdir.

21 EISDIR Is a directory
An attempt to write on a directory.

22 EINVAL Invalid argument
Some invalid argument: currently, dismounting a non-mounted device, mentioning an unknown signal insig-
nal, and giving an unknown request instty to the TIU special file.

23 ENFILE File table overflow
The system’s table of open files is full, and temporarily no moreopens can be accepted.

24 EMFILE Too many open files
Only 15 files can be open per process.

25 ENOTTY Not a typewriter
The file mentioned instty or gtty is not a typewriter or one of the other devices to which these calls apply.

26 ETXTBSY Te xt file busy
An attempt to execute a pure-procedure program which is currently open for writing (or reading!). Also an
attempt to open for writing a pure-procedure program that is being executed.

- 2 -

-

INTRO (II) 11/5/73 INTRO (II)

27 EFBIG File too large
An attempt to make a file larger than the maximum of 32768 blocks.

28 ENOSPC No space left on device
During awrite to an ordinary file, there is no free space left on the device.

29 ESPIPE Seek on pipe
A seek was issued to a pipe. This error should also be issued for other non-seekable devices.

30 EROFS Read-onlyfi le system
An attempt to modify a file or directory was made on a device mounted read-only.

31 EMLINK Too many links
An attempt to make more than 127 links to a file.

32 EPIPE Write on broken pipe
A write on a pipe for which there is no process to read the data.This condition normally generates a signal;
the error is returned if the signal is ignored.

- 3 -

-

BREAK (II) 8/5/73 BREAK(II)

NAME
break, brk, sbrk− change core allocation

SYNOPSIS
(break = 17.)
sys break; addr

char *brk(addr)

char *sbrk(incr)

DESCRIPTION
Break sets the system’s idea of the lowest location not used by the program (called the break) toaddr
(rounded up to the next multiple of 64 bytes).Locations not less thanaddr and below the stack pointer are
not in the address space and will thus cause a memory violation if accessed.

From C,brk will set the break toaddr. The old break is returned.

In the alternate entrysbrk, incr more bytes are added to the program’s data space and a pointer to the start
of the new area is returned.

When a program begins execution viaexec the break is set at the highest location defined by the program
and data storage areas. Ordinarily, therefore, only programs with growing data areas need to usebreak.

SEE ALSO
exec (II), alloc (III), end (III)

DIAGNOSTICS
The c-bit is set if the program requests more memory than the system limit or if more than 8 segmentation
registers would be required to implement the break. From C,−1 is returned for these errors.

BUGS
Setting the break in the range 0177700 to 0177777 is the same as setting it to zero.

- 4 -

-

CHDIR (II) 8/5/73 CHDIR(II)

NAME
chdir− change working directory

SYNOPSIS
(chdir = 12.)
sys chdir; dirname

chdir(dirname)
char *dirname;

DESCRIPTION
Dirname is the address of the pathname of a directory, terminated by a null byte.Chdir causes this directo-
ry to become the current working directory.

SEE ALSO
chdir (I)

DIAGNOSTICS
The error bit (c-bit) is set if the given name is not that of a directory or is not readable. From C, a−1 re-
turned value indicates an error, 0 indicates success.

- 5 -

-

CHMOD (II) 12/15/74 CHMOD(II)

NAME
chmod− change mode of file

SYNOPSIS
(chmod = 15.)
sys chmod; name; mode

chmod(name, mode)
char *name;

DESCRIPTION
The file whose name is given as the null-terminated string pointed to byname has its mode changed to
mode. Modes are constructed by ORing together some combination of the following:

4000 set user ID on execution
2000 set group ID on execution
1000 save text image after execution
0400 read by owner
0200 write by owner
0100 execute (search on directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

Only the owner of a file (or the super-user) may change the mode. Only the super-user can set the 1000
mode.

SEE ALSO
chmod (I)

DIAGNOSTIC
Error bit (c-bit) set ifname cannot be found or if current user is neither the owner of the file nor the super-
user. From C, a−1 returned value indicates an error, 0 indicates success.

- 6 -

-

CHOWN (II) 12/15/74 CHOWN (II)

NAME
chown− change owner and group of a file

SYNOPSIS
(chmod = 16.)
sys chown; name; owner

chown(name, owner)
char *name;

DESCRIPTION
The file whose name is given by the null-terminated string pointed to byname has its owner and group
changed to the low and high bytes ofowner respectively. Only the super-user may execute this call, be-
cause if users were able to give files away, they could defeat the (nonexistent) file-space accounting proce-
dures.

SEE ALSO
chown (VIII), chgrp (VIII), passwd (V)

DIAGNOSTICS
The error bit (c-bit) is set on illegal owner changes.From C a−1 returned value indicates error, 0 indicates
success.

- 7 -

-

CLOSE (II) 8/5/73 CLOSE(II)

NAME
close − close a file

SYNOPSIS
(close = 6.)
(file descriptor in r0)
sys close

close(fildes)

DESCRIPTION
Given a file descriptor such as returned from anopen, creat, or pipe call, close closes the associated file. A
close of all files is automatic onexit, but since processes are limited to 15 simultaneously open files, close
is necessary for programs which deal with many files.

SEE ALSO
creat (II), open (II), pipe (II)

DIAGNOSTICS
The error bit (c-bit) is set for an unknown file descriptor. From C a−1 indicates an error, 0 indicates suc-
cess.

- 8 -

-

CREAT (II) 8/5/73 CREAT (II)

NAME
creat − create a new file

SYNOPSIS
(creat = 8.)
sys creat; name; mode
(file descriptor in r0)

creat(name, mode)
char *name;

DESCRIPTION
Creat creates a new file or prepares to rewrite an existing file calledname, given as the address of a null-ter-
minated string. If the file did not exist, it is given modemode. Seechmod (II) for the construction of the
mode argument.

If the file did exist, its mode and owner remain unchanged but it is truncated to 0 length.

The file is also opened for writing, and its file descriptor is returned (in r0).

The mode given is arbitrary; it need not allow writing. This feature is used by programs which deal with
temporary files of fixed names. The creation is done with a mode that forbids writing.Then if a second in-
stance of the program attempts acreat, an error is returned and the program knows that the name is unus-
able for the moment.

SEE ALSO
write (II), close (II), stat (II)

DIAGNOSTICS
The error bit (c-bit) may be set if: a needed directory is not searchable; the file does not exist and the direc-
tory in which it is to be created is not writable; the file does exist and is unwritable; the file is a directory;
there are already too many files open.

From C, a−1 return indicates an error.

- 9 -

-

CSW (II) 8/5/73 CSW(II)

NAME
csw− read console switches

SYNOPSIS
(csw = 38.; not in assembler)
sys csw

getcsw()

DESCRIPTION
The setting of the console switches is returned (in r0).

- 10 -

-

DUP (II) 8/5/73 DUP(II)

NAME
dup− duplicate an open file descriptor

SYNOPSIS
(dup = 41.; not in assembler)
(file descriptor in r0)
sys dup

dup(fildes)
int fildes;

DESCRIPTION
Given a file descriptor returned from anopen, pipe, or creat call, dup will allocate another file descriptor
synonymous with the original. The new file descriptor is returned in r0.

Dup is used more to reassign the value of file descriptors than to genuinely duplicate a file descriptor.
Since the algorithm to allocate file descriptors returns the lowest available value, combinations ofdup and
close can be used to manipulate file descriptors in a general way. This is handy for manipulating standard
input and/or standard output.

SEE ALSO
creat (II), open (II), close (II), pipe (II)

DIAGNOSTICS
The error bit (c-bit) is set if: the given file descriptor is invalid; there are already too many open files. From
C, a−1 returned value indicates an error.

- 11 -

-

EXEC (II) 8/5/73 EXEC(II)

NAME
exec, execl, execv − execute a file

SYNOPSIS
(exec = 11.)
sys exec; name; args
...
name: <...\0>
...
args: arg0; arg1; ...; 0
arg0: <...\0>
arg1: <...\0>

...

execl(name, arg0, arg1, ..., argn, 0)
char *name, *arg0, *arg1, ..., *argn;

execv(name, argv)
char *name;
char *argv[];

DESCRIPTION
Exec overlays the calling process with the named file, then transfers to the beginning of the core image of
the file. Therecan be no return from the file; the calling core image is lost.

Files remain open acrossexec calls. Ignoredsignals remain ignored acrossexec, but signals that are caught
are reset to their default values.

Each user has areal user ID and group ID and aneffective user ID and group ID. The real ID identifies the
person using the system; the effective ID determines his access privileges. Exec changes the effective user
and group ID to the owner of the executed file if the file has the ‘‘set-user-ID’’ or ‘‘set-group-ID’’ modes.
The real user ID is not affected.

The form of this call differs somewhat depending on whether it is called from assembly language or C; see
below for the C version.

The first argument toexec is a pointer to the name of the file to be executed. Thesecond is the address of a
null-terminated list of pointers to arguments to be passed to the file. Conventionally, the first argument is
the name of the file. Eachpointer addresses a string terminated by a null byte.

Once the called file starts execution, the arguments are available as follows. Thestack pointer points to a
word containing the number of arguments. Justabove this number is a list of pointers to the argument
strings. Thearguments are placed as high as possible in core.

sp→ nargs
arg0
...
argn
−1

arg0: <arg0\0>
...

argn: <argn\0>

From C, two interfaces are available. execl is useful when a known file with known arguments is being
called; the arguments toexecl are the character strings constituting the file and the arguments; as in the ba-
sic call, the first argument is conventionally the same as the file name (or its last component).A 0 argu-
ment must end the argument list.

Theexecv version is useful when the number of arguments is unknown in advance; the arguments toexecv
are the name of the file to be executed and a vector of strings containing the arguments. Thelast argument
string must be followed by a 0 pointer.

- 12 -

-

EXEC (II) 8/5/73 EXEC(II)

When a C program is executed, it is called as follows:

main(argc, argv)
int argc;
char **argv;

whereargc is the argument count andargv is an array of character pointers to the arguments themselves.
As indicated,argc is conventionally at least one and the first member of the array points to a string contain-
ing the name of the file.

Argv is not directly usable in anotherexecv, sinceargv[argc] is −1 and not 0.

SEE ALSO
fork (II)

DIAGNOSTICS
If the file cannot be found, if it is not executable, if it does not have a valid header (407, 410, or 411 octal as
fi rst word), if maximum memory is exceeded, or if the arguments require more than 512 bytes a return from
exec constitutes the diagnostic; the error bit (c-bit) is set.Even for the super-user, at least one of the ex-
ecute-permission bits must be set for a file to be executed. FromC the returned value is−1.

BUGS
Only 512 characters of arguments are allowed.

- 13 -

-

EXIT (II) 8/5/73 EXIT(II)

NAME
exit − terminate process

SYNOPSIS
(exit = 1.)
(status in r0)
sys exit

exit(status)
int status;

DESCRIPTION
Exit is the normal means of terminating a process.Exit closes all the process’s files and notifies the parent
process if it is executing await. The low byte of r0 (resp. the argument toexit) is available as status to the
parent process.

This call can never return.

SEE ALSO
wait (II)

DIAGNOSTICS
None.

- 14 -

-

FORK (II) 8/5/73 FORK(II)

NAME
fork − spawn new process

SYNOPSIS
(fork = 2.)
sys fork
(new process return)
(old process return)

fork()

DESCRIPTION
Fork is the only way new processes are created.The new process’s core image is a copy of that of the caller
of fork. The only distinction is the return location and the fact that r0 in the old (parent) process contains
the process ID of the new (child) process. This process ID is used bywait.

The two returning processes share all open files that existed before the call. In particular, this is the way
that standard input and output files are passed and also how pipes are set up.

From C, the child process receives a 0 return, and the parent receives a non-zero number which is the pro-
cess ID of the child; a return of−1 indicates inability to create a new process.

SEE ALSO
wait (II), exec (II)

DIAGNOSTICS
The error bit (c-bit) is set in the old process if a new process could not be created because of lack of process
space. FromC, a return of−1 (not just negative) indicates an error.

- 15 -

-

FSTAT (II) 8/5/73 FSTAT (II)

NAME
fstat − get status of open file

SYNOPSIS
(fstat = 28.)
(file descriptor in r0)
sys fstat; buf

fstat(fildes, buf)
struct inode *buf;

DESCRIPTION
This call is identical tostat, except that it operates on open files instead of files given by name. Itis most
often used to get the status of the standard input and output files, whose names are unknown.

SEE ALSO
stat (II)

DIAGNOSTICS
The error bit (c-bit) is set if the file descriptor is unknown; from C, a−1 return indicates an error, 0 indi-
cates success.

- 16 -

-

GETGID (II) 5/15/74 GETGID(II)

NAME
getgid − get group identifications

SYNOPSIS
(getgid = 47.; not in assembler)
sys getgid

getgid()

DESCRIPTION
Getgid returns a word (in r0), the low byte of which contains the real group ID of the current process.The
high byte contains the effective group ID of the current process. The real group ID identifies the group of
the person who is logged in, in contradistinction to the effective group ID, which determines his access per-
mission at the moment. It is thus useful to programs which operate using the ‘‘set group ID’’ mode, to find
out who invoked them.

SEE ALSO
setgid (II)

DIAGNOSTICS
−

- 17 -

-

GETPID (II) 2/8/75 GETPID(II)

NAME
getpid − get process identification

SYNOPSIS
(getpid = 20.; not in assembler)
sys getpid
(pid in r0)

getpid()

DESCRIPTION
Getpid returns the process ID of the current process.Most often it is used to generate uniquely-named tem-
porary files.

SEE ALSO
−

DIAGNOSTICS
−

- 18 -

-

GETUID (II) 5/15/74 GETUID(II)

NAME
getuid − get user identifications

SYNOPSIS
(getuid = 24.)
sys getuid

getuid()

DESCRIPTION
Getuid returns a word (in r0), the low byte of which contains the real user ID of the current process.The
high byte contains the effective user ID of the current process. The real user ID identifies the person who is
logged in, in contradistinction to the effective user ID, which determines his access permission at the mo-
ment. It is thus useful to programs which operate using the ‘‘set user ID’’ mode, to find out who invoked
them.

SEE ALSO
setuid (II)

DIAGNOSTICS
−

- 19 -

-

GTTY (II) 8/5/73 GTTY(II)

NAME
gtty − get typewriter status

SYNOPSIS
(gtty = 32.)
(file descriptor in r0)
sys gtty; arg
...
arg: .=.+6

gtty(fildes, arg)
int arg[3];

DESCRIPTION
Gtty stores in the three words addressed byarg the status of the typewriter whose file descriptor is given in
r0 (resp. given as the first argument). Theformat is the same as that passed bystty.

SEE ALSO
stty (II)

DIAGNOSTICS
Error bit (c-bit) is set if the file descriptor does not refer to a typewriter. From C, a−1 value is returned for
an error, 0, for a successful call.

- 20 -

-

INDIR (II) 8/5/73 INDIR(II)

NAME
indir − indirect system call

SYNOPSIS
(indir = 0.; not in assembler)
sys indir; syscall

DESCRIPTION
The system call at the locationsyscall is executed. Execution resumes after theindir call.

The main purpose ofindir is to allow a program to store arguments in system calls and execute them out of
line in the data segment. Thispreserves the purity of the text segment.

If indir is executed indirectly, it is a no-op. If the instruction at the indirect location is not a system call, the
executing process will get a fault.

SEE ALSO
−

DIAGNOSTICS
−

- 21 -

-

KILL (II) 12/15/74 KILL(II)

NAME
kill − send signal to a process

SYNOPSIS
(kill = 37.; not in assembler)
(process number in r0)
sys kill; sig

kill(pid, sig);

DESCRIPTION
Kill sends the signalsig to the process specified by the process number in r0. See signal (II) for a list of
signals.

The sending and receiving processes must have the same effective user ID, otherwise this call is restricted
to the super-user.

If the process number is 0, the signal is sent to all other processes which have the same controlling type-
writer and user ID.

In no case is it possible for a process to kill itself.

SEE ALSO
signal (II), kill (I)

DIAGNOSTICS
The error bit (c-bit) is set if the process does not have the same effective user ID and the user is not super-
user, or if the process does not exist. FromC, −1 is returned.

- 22 -

-

LINK (II) 8/5/73 LINK(II)

NAME
link − link to a file

SYNOPSIS
(link = 9.)
sys link; name1; name2

link(name1, name2)
char *name1, *name2;

DESCRIPTION
A l ink to name1 is created; the link has the namename2. Either name may be an arbitrary path name.

SEE ALSO
link (I), unlink (II)

DIAGNOSTICS
The error bit (c-bit) is set whenname1 cannot be found; whenname2 already exists; when the directory of
name2 cannot be written; when an attempt is made to link to a directory by a user other than the super-user;
when an attempt is made to link to a file on another file system; when more than 127 links are made.From
C, a−1 return indicates an error, a 0 return indicates success.

- 23 -

-

MKNOD (II) 8/5/73 MKNOD(II)

NAME
mknod− make a directory or a special file

SYNOPSIS
(mknod = 14.; not in assembler)
sys mknod; name; mode; addr

mknod(name, mode, addr)
char *name;

DESCRIPTION
Mknod creates a new file whose name is the null-terminated string pointed to byname. The mode of the
new file (including directory and special file bits) is initialized frommode. The first physical address of the
fi le is initialized fromaddr. Note that in the case of a directory, addr should be zero.In the case of a spe-
cial file, addr specifies which special file.

Mknod may be invoked only by the super-user.

SEE ALSO
mkdir (I), mknod (VIII), fs (V)

DIAGNOSTICS
Error bit (c-bit) is set if the file already exists or if the user is not the super-user. From C, a−1 value indi-
cates an error.

- 24 -

-

MOUNT (II) 5/15/74 MOUNT(II)

NAME
mount− mount file system

SYNOPSIS
(mount = 21.)
sys mount; special; name; rwflag

mount(special, name, rwflag)
char *special, *name;

DESCRIPTION
Mount announces to the system that a removable file system has been mounted on the block-structured spe-
cial file special; from now on, references to file name will refer to the root file on the newly mounted file
system.Special andname are pointers to null-terminated strings containing the appropriate path names.

Name must exist already. Its old contents are inaccessible while the file system is mounted.

The rwflag argument determines whether the file system can be written on; if it is 0 writing is allowed, if
non-zero no writing is done.Physically write-protected and magnetic tape file systems must be mounted
read-only or errors will occur when access times are updated, whether or not any explicit write is attempt-
ed.

SEE ALSO
mount (VIII), umount (II)

DIAGNOSTICS
Error bit (c-bit) set if:special is inaccessible or not an appropriate file; name does not exist; special is al-
ready mounted;name is in use; there are already too many file systems mounted.

BUGS
−

- 25 -

-

NICE (II) 8/5/73 NICE(II)

NAME
nice− set program priority

SYNOPSIS
(nice = 34.)
(priority in r0)
sys nice

nice(priority)

DESCRIPTION
The schedulingpriority of the process is changed to the argument. Positive priorities get less service than
normal; 0 is default. Onlythe super-user may specify a negative priority. The valid range ofpriority is 20
to −220. Thevalue of 4 is recommended to users who wish to execute long-running programs without flak
from the administration.

The effect of this call is passed to a child process by thefork system call. The effect can be cancelled by
another call tonice with apriority of 0.

The actual running priority of a process is thepriority argument plus a number that ranges from 100 to 119
depending on the cpu usage of the process.

SEE ALSO
nice (I)

DIAGNOSTICS
The error bit (c-bit) is set if the user requests apriority outside the range of 0 to 20 and is not the super-us-
er.

- 26 -

-

OPEN (II) 8/5/73 OPEN(II)

NAME
open− open for reading or writing

SYNOPSIS
(open = 5.)
sys open; name; mode
(file descriptor in r0)

open(name, mode)
char *name;

DESCRIPTION
Open opens the file name for reading (ifmode is 0), writing (if mode is 1) or for both reading and writing
(if mode is 2). Name is the address of a string of ASCII characters representing a path name, terminated by
a null character.

The returned file descriptor should be saved for subsequent calls toread, write, andclose.

SEE ALSO
creat (II), read (II), write (II), close (II)

DIAGNOSTICS
The error bit (c-bit) is set if the file does not exist, if one of the necessary directories does not exist or is un-
readable, if the file is not readable (resp. writable), or if too many files are open. From C, a−1 value is re-
turned on an error.

- 27 -

-

PIPE (II) 8/5/73 PIPE(II)

NAME
pipe− create an interprocess channel

SYNOPSIS
(pipe = 42.)
sys pipe
(read file descriptor in r0)
(write file descriptor in r1)

pipe(fildes)
int fildes[2];

DESCRIPTION
The pipe system call creates an I/O mechanism called a pipe. The file descriptors returned can be used in
read and write operations.When the pipe is written using the descriptor returned in r1 (resp. fildes[1]), up
to 4096 bytes of data are buffered before the writing process is suspended.A read using the descriptor re-
turned in r0 (resp. fildes[0]) will pick up the data.

It is assumed that after the pipe has been set up, two (or more) cooperating processes (created by subse-
quentfork calls) will pass data through the pipe withread andwrite calls.

The Shell has a syntax to set up a linear array of processes connected by pipes.

Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors closed) return
an end-of-file. Write calls under similar conditions generate a fatal signal (signal (II)); if the signal is ig-
nored, an error is returned on the write.

SEE ALSO
sh (I), read (II), write (II), fork (II)

DIAGNOSTICS
The error bit (c-bit) is set if too many files are already open.From C, a−1 returned value indicates an error.
A signal is generated if a write on a pipe with only one end is attempted.

BUGS

- 28 -

-

PROFIL (II) 5/15/74 PROFIL (II)

NAME
profil − execution time profile

SYNOPSIS
(profil = 44.; not in assembler)
sys profil; buff; bufsiz; offset; scale

profil(buff, bufsiz, offset, scale)
char buff[];
int bufsiz, offset, scale;

DESCRIPTION
Buff points to an area of core whose length (in bytes) is given by bufsiz. After this call, the user’s program
counter (pc) is examined each clock tick (60th second);offset is subtracted from it, and the result multiplied
by scale. If the resulting number corresponds to a word insidebuff , that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with binary point at the left: 177777(8) gives a
1-1 mapping of pc’s to words inbuff; 77777(8) maps each pair of instruction words together. 2(8) maps all
instructions onto the beginning ofbuff (producing a non-interrupting core clock).

Profiling is turned off by giving ascale of 0 or 1. It is rendered ineffective by giving abufsiz of 0. Profil-
ing is also turned off when anexec is executed but remains on in child and parent both after afork.

SEE ALSO
monitor (III), prof (I)

DIAGNOSTICS
−

- 29 -

-

PTRACE (II) 1/25/75 PTRACE (II)

NAME
ptrace − process trace

SYNOPSIS
(ptrace = 26.; not in assembler)
(data in r0)
sys ptrace; pid; addr; request
(value in r0)

ptrace(request, pid, addr, data);

DESCRIPTION
Ptrace provides a means by which a parent process may control the execution of a child process, and exam-
ine and change its core image.Its primary use is for the implementation of breakpoint debugging, but it
should be adaptable for simulation of non-UNIX environments. Thereare four arguments whose interpre-
tation depends on arequest argument. Generally, pid is the process ID of the traced process, which must be
a child (no more distant descendant) of the tracing process.A process being traced behaves normally until
it encounters some signal whether internally generated like ‘‘ille gal instruction’’ or externally generated
like ‘‘interrupt.’’ See signal (II) for the list. Then the traced process enters a stopped state and its parent is
notified viawait (II). Whenthe child is in the stopped state, its core image can be examined and modified
usingptrace. If desired, anotherptrace request can then cause the child either to terminate or to continue,
possibly ignoring the signal.

The value of therequest argument determines the precise action of the call:

0 This request is the only one used by the child process; it declares that the process is to be traced by its
parent. Allthe other arguments are ignored. Peculiar results will ensue if the parent does not expect
to trace the child.

1,2 Theword in the child process’s address space ataddr is returned (in r0).Request 1 indicates the data
space (normally used); 2 indicates the instruction space (when I and D space are separated).addr
must be even. Thechild must be stopped. The inputdata is ignored.

3 The word of the system’s per-process data area corresponding toaddr is returned.Addr must be even
and less than 512. This space contains the registers and other information about the process; its layout
corresponds to theuser structure in the system.

4,5 Thegiven data is written at the word in the process’s address space corresponding toaddr, which must
be even. No useful value is returned. Request 4 specifies data space (normally used), 5 specifies in-
struction space.Attempts to write in pure procedure result in termination of the child, instead of going
through or causing an error for the parent.

6 The process’s system data is written, as it is read with request 3.Only a few locations can be written
in this way: the general registers, the floating point status and registers, and certain bits of the proces-
sor status word.

7 Thedata argument is taken as a signal number and the child’s execution continues as if it had incurred
that signal. Normally the signal number will be either 0 to indicate that the signal which caused the
stop should be ignored, or that value fetched out of the process’s image indicating which signal caused
the stop.

8 The traced process terminates.

As indicated, these calls (except for request 0) can be used only when the subject process has stopped.The
wait call is used to determine when a process stops; in such a case the ‘‘termination’’ status returned by
wait has the value 0177 to indicate stoppage rather than genuine termination.

To forestall possible fraud,ptrace inhibits the set-user-id facility on subsequentexec (II)
calls.

SEE ALSO
wait (II), signal (II), cdb (I)

- 30 -

-

PTRACE (II) 1/25/75 PTRACE (II)

DIAGNOSTICS
From assembler, the c-bit (error bit) is set on errors; from C, −1 is returned anderrno has the error code.

BUGS
The request 0 call should be able to specify signals which are to be treated normally and not cause a stop.
In this way, for example, programs with simulated floating point (which use ‘‘ille gal instruction’’ signals at
a very high rate) could be efficiently debugged.

Also, it should be possible to stop a process on occurrence of a system call; in this way a completely con-
trolled environment could be provided.

- 31 -

-

READ (II) 8/5/73 READ(II)

NAME
read− read from file

SYNOPSIS
(read = 3.)
(file descriptor in r0)
sys read; buffer; nbytes

read(fildes, buffer, nbytes)
char *buffer;

DESCRIPTION
A file descriptor is a word returned from a successfulopen, creat, dup, or pipe call. Buffer is the location of
nbytes contiguous bytes into which the input will be placed.It is not guaranteed that allnbytes bytes will
be read; for example if the file refers to a typewriter at most one line will be returned. In any event the
number of characters read is returned (in r0).

If the returned value is 0, then end-of-file has been reached.

SEE ALSO
open (II), creat (II), dup (II), pipe (II)

DIAGNOSTICS
As mentioned, 0 is returned when the end of the file has been reached. If the read was otherwise unsuc-
cessful the error bit (c-bit) is set.Many conditions can generate an error: physical I/O errors, bad buffer ad-
dress, preposterousnbytes, fi le descriptor not that of an input file. FromC, a−1 return indicates the error.

- 32 -

-

SEEK (II) 8/5/73 SEEK(II)

NAME
seek− move read/write pointer

SYNOPSIS
(seek = 19.)
(file descriptor in r0)
sys seek; offset; ptrname

seek(fildes, offset, ptrname)

DESCRIPTION
The file descriptor refers to a file open for reading or writing.The read (resp. write) pointer for the file is
set as follows:

if ptrname is 0, the pointer is set tooffset.

if ptrname is 1, the pointer is set to its current location plusoffset.

if ptrname is 2, the pointer is set to the size of the file plusoffset.

if ptrname is 3, 4 or 5, the meaning is as above for 0, 1 and 2 except that the offset is multiplied by 512.

If ptrname is 0 or 3,offset is unsigned, otherwise it is signed.

SEE ALSO
open (II), creat (II)

DIAGNOSTICS
The error bit (c-bit) is set for an undefined file descriptor. From C, a−1 return indicates an error.

- 33 -

-

SETGID (II) 8/5/73 SETGID(II)

NAME
setgid− set process group ID

SYNOPSIS
(setgid = 46.; not in assembler)
(group ID in r0)
sys setgid

setgid(gid)

DESCRIPTION
The group ID of the current process is set to the argument. Boththe effective and the real group ID are set.
This call is only permitted to the super-user or if the argument is the real group ID.

SEE ALSO
getgid (II)

DIAGNOSTICS
Error bit (c-bit) is set as indicated; from C, a−1 value is returned.

- 34 -

-

SETUID (II) 8/5/73 SETUID(II)

NAME
setuid− set process user ID

SYNOPSIS
(setuid = 23.)
(user ID in r0)
sys setuid

setuid(uid)

DESCRIPTION
The user ID of the current process is set to the argument. Boththe effective and the real user ID are set.
This call is only permitted to the super-user or if the argument is the real user ID.

SEE ALSO
getuid (II)

DIAGNOSTICS
Error bit (c-bit) is set as indicated; from C, a−1 value is returned.

- 35 -

-

SIGNAL (II) 8/5/73 SIGNAL (II)

NAME
signal− catch or ignore signals

SYNOPSIS
(signal = 48.)
sys signal; sig; label
(old value in r0)

signal(sig, func)
int (*func)();

DESCRIPTION
A signal is generated by some abnormal event, initiated either by user at a typewriter (quit, interrupt), by a
program error (bus error, etc.), or by request of another program (kill).Normally all signals cause termina-
tion of the receiving process, but this call allows them either to be ignored or to cause an interrupt to a spec-
ified location. Here is the list of signals:

1 hangup
2 interrupt
3* quit
4* illegal instruction (not reset when caught)
5* tracetrap (not reset when caught)
6* IOT instruction
7* EMT instruction
8* floating point exception
9 kill (cannot be caught or ignored)
10* bus error
11* segmentation violation
12* badargument to system call
13 writeon a pipe with no one to read it

In the assembler call, iflabel is 0, the process is terminated when the signal occurs; this is the default ac-
tion. If label is odd, the signal is ignored.Any other even label specifies an address in the process where
an interrupt is simulated. An RTI or RTT instruction will return from the interrupt.Except as indicated, a
signal is reset to 0 after being caught. Thus if it is desired to catch every such signal, the catching routine
must issue anothersignal call.

In C, if func is 0, the default action for signalsig (termination) is reinstated.If func is 1, the signal is ig-
nored. Iffunc is non-zero and even, it is assumed to be the address of a function entry point.When the sig-
nal occurs, the function will be called.A return from the function will continue the process at the point it
was interrupted. Asin the assembler call,signal must in general be called again to catch subsequent sig-
nals.

When a caught signal occurs during certain system calls, the call terminates prematurely. In particular this
can occur during aread or write on a slow device (like a typewriter; but not a file); and during orwait.
When such a signal occurs, the saved user status is arranged in such a way that when return from the signal-
catching takes place, it will appear that the system call returned a characteristic error status.The user’s pro-
gram may then, if it wishes, re-execute the call.

The starred signals in the list above cause a core image if not caught or ignored.

The value of the call is the old action defined for the signal.

After a fork (II) the child inherits all signals.Exec (II) resets all caught signals to default action.

SEE ALSO
kill (I), kill (II), ptrace (II), reset (III)

DIAGNOSTICS
The error bit (c-bit) is set if the given signal is out of range. In C, a−1 indicates an error; 0 indicates suc-
cess.

- 36 -

-

SIGNAL (II) 8/5/73 SIGNAL (II)

BUGS

- 37 -

-

SLEEP (II) 8/5/73 SLEEP(II)

NAME
sleep− stop execution for interval

SYNOPSIS
(sleep = 35.; not in assembler)
(seconds in r0)
sys sleep

sleep(seconds)

DESCRIPTION
The current process is suspended from execution for the number of seconds specified by the argument.

SEE ALSO
sleep (I)

DIAGNOSTICS
−

- 38 -

-

STAT (II) 8/5/73 STAT (II)

NAME
stat− get file status

SYNOPSIS
(stat = 18.)
sys stat; name; buf

stat(name, buf)
char *name;
struct inode *buf;

DESCRIPTION
Name points to a null-terminated string naming a file; buf is the address of a 36(10) byte buffer into which
information is placed concerning the file. It is unnecessary to have any permissions at all with respect to
the file, but all directories leading to the file must be readable.After stat, buf has the following structure
(starting offset given in bytes):

struct inode {
char minor; /* +0: minor device of i-node */
char major; /* +1: major device */
int inumber; /* +2 */
int flags; /* +4: see below */
char nlinks; /* +6: number of links to file */
char uid; /* +7: user ID of owner */
char gid; /* +8: group ID of owner */
char size0; /* +9: high byte of 24-bit size */
int size1; /* +10: low word of 24-bit size */
int addr[8]; /* +12: block numbers or device number */
int actime[2]; /* +28: time of last access */
int modtime[2]; /* +32: time of last modification */

};

The flags are as follows:

100000 i-nodeis allocated
060000 2-bitfi le type:

000000 plainfi le
040000 directory
020000 character-type special file
060000 block-typespecial file.

010000 large file
004000 setuser-ID on execution
002000 setgroup-ID on execution
001000 save text image after execution
000400 read(owner)
000200 write(owner)
000100 execute (owner)
000070 read,write, execute (group)
000007 read,write, execute (others)

SEE ALSO
ls (I), fstat (II), fs (V)

DIAGNOSTICS
Error bit (c-bit) is set if the file cannot be found. From C, a−1 return indicates an error.

- 39 -

-

STIME (II) 8/5/73 STIME(II)

NAME
stime− set time

SYNOPSIS
(stime = 25.)
(time in r0-r1)
sys stime

stime(tbuf)
int tbuf[2];

DESCRIPTION
Stime sets the system’s idea of the time and date.Time is measured in seconds from 0000 GMT Jan 1
1970. Onlythe super-user may use this call.

SEE ALSO
date (I), time (II), ctime (III)

DIAGNOSTICS
Error bit (c-bit) set if user is not the super-user.

- 40 -

-

STTY (II) 12/15/74 STTY(II)

NAME
stty − set mode of typewriter

SYNOPSIS
(stty = 31.)
(file descriptor in r0)
sys stty; arg
...
arg: .byte ispeed, ospeed; .byte erase, kill; mode

stty(fildes, arg)
struct {

char ispeed, ospeed;
char erase, kill;
int mode;

} *arg;

DESCRIPTION
Stty sets mode bits and character speeds for the typewriter whose file descriptor is passed in r0 (resp. is the
fi rst argument to the call). First, the system delays until the typewriter is quiescent.The input and output
speeds are set from the first two bytes of the argument structure as indicated by the following table, which
corresponds to the speeds supported by the DH-11 interface. If DC-11, DL-11 or KL-11 interfaces are
used, impossible speed changes are ignored.

0 (hang up dataphone)
1 50 baud
2 75 baud
3 110 baud
4 134.5 baud
5 150 baud
6 200 baud
7 300 baud
8 600 baud
9 1200 baud
10 1800baud
11 2400baud
12 4800baud
13 9600baud
14 ExternalA
15 ExternalB

In the current configuration, only 110, 150 and 300 baud are really supported on dial-up lines, in that the
code conversion and line control required for IBM 2741’s (134.5 baud) must be implemented by the user’s
program, and the half-duplex line discipline required for the 202 dataset (1200 baud) is not supplied.

The next two characters of the argument structure specify the erase and kill characters respectively. (De-
faults are # and @.)

Themode contains several bits which determine the system’s treatment of the typewriter:

100000 Selectone of two algorithms for backspace delays
040000 Selectone of two algorithms for form-feed and vertical-tab delays
030000 Selectone of four algorithms for carriage-return delays
006000 Selectone of four algorithms for tab delays
001400 Selectone of four algorithms for new-line delays
000200 even parity allowed on input (e. g. for M37s)
000100 oddparity allowed on input
000040 raw mode: wake up on all characters
000020 mapCR into LF; echo LF or CR as CR-LF

- 41 -

-

STTY (II) 12/15/74 STTY(II)

000010 echo(full duplex)
000004 mapupper case to lower on input (e. g. M33)
000002 echoand print tabs as spaces
000001 hangup (remove ‘data terminal ready,’ lead CD) after last close

The delay bits specify how long transmission stops to allow for mechanical or other movement when cer-
tain characters are sent to the terminal. In all cases a value of 0 indicates no delay.

Backspace delays are currently ignored but will be used for Terminet 300’s.

If a form-feed/vertical tab delay is specified, it lasts for about 2 seconds.

Carriage-return delay type 1 lasts about .08 seconds and is suitable for the Terminet 300. Delay type 2 lasts
about .16 seconds and is suitable for the VT05 and the TI 700. Delay type 3 is unimplemented and is 0.

New-line delay type 1 is dependent on the current column and is tuned for Teletype model 37’s. Type 2 is
useful for the VT05 and is about .10 seconds.Type 3 is unimplemented and is 0.

Tab delay type 1 is dependent on the amount of movement and is tuned to the Teletype model 37.Other
types are unimplemented and are 0.

Characters with the wrong parity, as determined by bits 200 and 100, are ignored.

In raw mode, every character is passed immediately to the program without waiting until a full line has
been typed. No erase or kill processing is done; the end-of-file character (EOT), the interrupt character
(DEL) and the quit character (FS) are not treated specially.

Mode 020 causes input carriage returns to be turned into new-lines; input of either CR or LF causes LF-CR
both to be echoed (used for GE TermiNet 300’s and other terminals without the newline function).

The hangup mode 01 causes the line to be disconnected when the last process with the line open closes it or
terminates. Itis useful when a port is to be used for some special purpose; for example, if it is associated
with an ACU used to place outgoing calls.

This system call is also used with certain special files other than typewriters, but since none of them are
part of the standard system the specifications will not be given.

SEE ALSO
stty (I), gtty (II)

DIAGNOSTICS
The error bit (c-bit) is set if the file descriptor does not refer to a typewriter. From C, a negative value indi-
cates an error.

- 42 -

-

SYNC (II) 8/5/73 SYNC(II)

NAME
sync− update super-block

SYNOPSIS
(sync = 36.; not in assembler)
sys sync

DESCRIPTION
Sync causes all information in core memory that should be on disk to be written out. This includes modi-
fied super blocks, modified i-nodes, and delayed block I/O.

It should be used by programs which examine a file system, for exampleicheck, df, etc. It is mandatory be-
fore a boot.

SEE ALSO
sync (VIII), update (VIII)

DIAGNOSTICS
−

- 43 -

-

TIME (II) 8/5/73 TIME(II)

NAME
time− get date and time

SYNOPSIS
(time = 13.)
sys time

time(tvec)
int tvec[2];

DESCRIPTION
Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds.From as, the high order
word is in the r0 register and the low order is in r1. From C, the user-supplied vector is filled in.

SEE ALSO
date (I), stime (II), ctime (III)

DIAGNOSTICS
−

- 44 -

-

TIMES (II) 8/5/73 TIMES(II)

NAME
times− get process times

SYNOPSIS
(times = 43.; not in assembler)
sys times; buffer

times(buffer)
struct tbuffer *buffer;

DESCRIPTION
Times returns time-accounting information for the current process and for the terminated child processes of
the current process. All times are in 1/60 seconds.

After the call, the buffer will appear as follows:

struct tbuffer {
int proc user time;
int proc system time;
int child user time[2];
int child system time[2];

};

The children times are the sum of the children’s process times and their children’s times.

SEE ALSO
time (I)

DIAGNOSTICS
−

BUGS
The process times should be 32 bits as well.

- 45 -

-

UMOUNT (II) 8/5/73 UMOUNT(II)

NAME
umount− dismount file system

SYNOPSIS
(umount = 22.)
sys umount; special

DESCRIPTION
Umount announces to the system that special file special is no longer to contain a removable file system.
The file associated with the special file reverts to its ordinary interpretation; seemount (II).

SEE ALSO
umount (VIII), mount (II)

DIAGNOSTICS
Error bit (c-bit) set if no file system was mounted on the special file or if there are still active files on the
mounted file system.

- 46 -

-

UNLINK (II) 8/5/73 UNLINK(II)

NAME
unlink − remove directory entry

SYNOPSIS
(unlink = 10.)
sys unlink; name

unlink(name)
char *name;

DESCRIPTION
Name points to a null-terminated string.Unlink removes the entry for the file pointed to byname from its
directory. If this entry was the last link to the file, the contents of the file are freed and the file is destroyed.
If, however, the file was open in any process, the actual destruction is delayed until it is closed, even though
the directory entry has disappeared.

SEE ALSO
rm (I), rmdir (I), link (II)

DIAGNOSTICS
The error bit (c-bit) is set to indicate that the file does not exist or that its directory cannot be written.Write
permission is not required on the file itself. It is also illegal to unlink a directory (except for the super-us-
er). FromC, a−1 return indicates an error.

- 47 -

-

WAIT (II) 2/9/75 WAIT (II)

NAME
wait − wait for process to terminate

SYNOPSIS
(wait = 7.)
sys wait
(process ID in r0)
(status in r1)

wait(status)
int *status;

DESCRIPTION
Wait causes its caller to delay until one of its child processes terminates.If any child has died since the last
wait, return is immediate; if there are no children, return is immediate with the error bit set (resp. with a
value of −1 returned). Thenormal return yields the process ID of the terminated child (in r0). In the case
of several children several wait calls are needed to learn of all the deaths.

If no error is indicated on return, the r1 high byte (resp. the high byte stored intostatus) contains the low
byte of the child process r0 (resp. the argument ofexit) when it terminated. The r1 (resp.status) low byte
contains the termination status of the process.See signal (II) for a list of termination statuses (signals); 0
status indicates normal termination.A special status (0177) is returned for a stopped process which has not
terminated and can be restarted. See ptrace (II).If the 0200 bit of the termination status is set, a core im-
age of the process was produced by the system.

If the parent process terminates without waiting on its children, the initialization process (process ID = 1)
inherits the children.

SEE ALSO
exit (II), fork (II), signal (II)

DIAGNOSTICS
The error bit (c-bit) is set if there are no children not previously waited for. From C, a returned value of−1
indicates an error.

- 48 -

-

WRITE (II) 8/5/73 WRITE(II)

NAME
write − write on a file

SYNOPSIS
(write = 4.)
(file descriptor in r0)
sys write; buffer; nbytes

write(fildes, buffer, nbytes)
char *buffer;

DESCRIPTION
A file descriptor is a word returned from a successfulopen, creat, dup, or pipe call.

Buffer is the address ofnbytes contiguous bytes which are written on the output file. Thenumber of char-
acters actually written is returned (in r0).It should be regarded as an error if this is not the same as request-
ed.

Writes which are multiples of 512 characters long and begin on a 512-byte boundary in the file are more ef-
ficient than any others.

SEE ALSO
creat (II), open (II), pipe (II)

DIAGNOSTICS
The error bit (c-bit) is set on an error: bad descriptor, buffer address, or count; physical I/O errors. From C,
a returned value of−1 indicates an error.

- 49 -

