C Reference Manual

Dennis M. Ritchie

Bell Telephone Laboratories
Murray Hill, New Jersey 07974

1. Introduction

C is a omputer language based on the earlier language BTH§. languages and their compilers differ irotw
major ways: C introduces the notion of types, and defines appropttedesgntax and semantics; also, C on the
PDR-11 is a true compileproducing machine code where B produced intenpratide.

Most of the software for thenix time-sharing system [2] is written in C, as is the operating system iG&fd-
so aailable on thedis 6070 computer at Murray Hill and and on the System/370 at Holmdel [3]. This paper is
a manual only for the C language itself as implemented orihrel1. Hawvever, hints are gien occasionally in the
text of implementation-dependent features.

The uNnix Programmes Manual [4] describes the library routinesitable to C programs undemix, and also
the procedures for compiling programs under that systefhe GcosC Library” by Lesk and Barres [5] describes
routines &ailable under that system as well as compilation procediasy of these routines, particularly the ones
having to do with 1/O, are also provided undenx. Finally, “Programming in € A Tutorial,” by B. W. Kernighan
[6], is as useful as promised by its title and the auslpeVvious introductions to allegedly impenetrable subjects.

2. Lexical conventions

There are six kinds of tokens: identifiereykords, constants, strings, expression operators, and other separators.
In general blanks, tabs, newlines, and comments as describedabelignored except as theerve to £parate to-
kens. Atleast one of these characters is required to separate otherwise adjacent identifiers, constants, and certain op-
erator-pairs.

If the input stream has been parsed into tokens up twea dgharacterthe next token is taken to include the
longest string of characters which could possibly constitute a token.

2.1 Comments
The characters+ introduce a comment, which terminates with the charactérs

2.2 IdentifierdNames)

An identifier is a sequence of letters and digits; the first character must be alphabetic. The undérswnets
as alphabetic. Upper and lower case letters are considefeetif Nomore than the first eight characters are sig-
nificant, and only the first gen for external identifiers.

2.3 Keywords
The following identifiers are reserved for use egaords, and may not be used otherwise:

C Refeence Manuai 2

int break
char continue
float if
double else
struct for

auto do
extern while
register switch
static case
goto default
return entry
sizeof

Theentry keyword is not currently implemented byyacompiler but is reserved for future use.

2.3 Constants
There are seral kinds of constants, as follows:

2.3.1 Intger constants

An integer constant is a sequence of digits. An integer is taken to be octal if it begifs détiimal otherwise.
The digits8 and9 have cctal value 10 and 11 respety.

2.3.2 Characteronstants

A character constant is 1 or 2 characters enclosed in single quotes Within a character constant a single
guote must be preceded by a back-slash Certainnon-graphic characters, arid’‘i tself, may be escaped accord-
ing to the following table:

BS \b
NL \n
CR \r
HT \t
ddd \ddd
\ \\

The escapée\ddd’ consists of the backslash followed by 1, 2, or 3 octal digits which are taken to specifjuthe v
of the desired characteA special case of this construction ‘9™ (not followed by a digit) which indicates a null
character.

Character constants befeaeactly like integers (not, in particulatike dbjects of character type). In conformity
with the addressing structure of ther-11, a character constant of length 1 has the code forvae diaracter in
the lowv-order byte and 0 in the high-order byte; a character constant of length 2 has the code for the first character in
the low byte and that for the second character in the high-order byte. Character constants with more than one char
acter are inherently machine-dependent and shoulddiced.

2.3.3 Floatingconstants

A floating constant consists of an integer part, a decimal point, a fraction pargrahan optionally signed inte-
ger xponent. Thenteger and fraction parts both consist of a sequence of digits. Either the integer part or the frac-
tion part (not both) may be missing; either the decimal point oe tued the exponent (not both) may be missing.
Every floating constant is taken to be double-precision.

2.4 Strings

A string is a sequence of characters surrounded by double qubtes A string has the type array-of-characters
(see belw) and refers to an area of storage initialized with thengcharacters. Theompiler places a null byte
(\0) & the end of each string so that programs which scan the string can find its end. In a string, the ¢Hdracter *
must be preceded by a™\'in addition, the same escapes as described for character constants may be used.

C Refeence Manuait 3

3. Syntaxnotation

In the syntax notation used in this manual, syntactigyoates are indicated hyalic type, and literal words and
characters igothic. Alternatives ae listed on separate linedn optional terminal or non-terminal symbol is in-
dicated by the subscript “optso that

{ expression), }

would indicate an optional expression in braces.

4. What's in a Name?

C bases the interpretation of an identifier upoo aitributes of the identifier: itstorage ¢assand itstype. The
storage class determines the location and lifetime of the storage associated with an identifier; the type determines the
meaning of the values found in the identietbrage.

There are four declarable storage classes: automatic, static, externafjisted reutomatic variables are local to
each iwocation of a function, and are discarded on return; statiables are local to a function, but retain their v
ues independently of wocations of the function; external variables are independentyofuaiction. Reister \ari-
ables are stored in the fast registers of the machireealtomatic variables tlyeare local to each function and dis-
appear on return.

C aupports four fundamental types of objects: characters, integers, single-, and double-precision floating-point
numbers.

Characters (declared, and hereinafter caltbdy) are chosen from thasci set; thg occupy the right-
most sgen hits of an 8-bit byte.lt is also possible to interprehar s as ggned, 25 mmplement 8-bit num-
bers.

Integers it) are represented in 16-bit2oomplement notation.

Single precision floating poinfl¢at) quantities hee magnitude in the range approximatelytsfa)r 0;
their precision is 24 bits or aboutvea decimal digits.

Double-precision floating-pointpuble) quantities hae the same range #lsat s and a precision of 56
bits or about 17 decimal digits.

Besides the four fundamental types there is a conceptually infinite classvefldgoes constructed from the fun-
damental types in the following ways:
arraysof objects of most types;
functionswhich return objects of aggn type;
pointersto objects of a gien type;
structurescontaining objects of various types.

In general these methods of constructing objects can be appliedwegursi

5. Objectsand Ivalues

An object is a manipulatablegien of storage; an Ivalue is an expression referring to an object. An obwious e
ample of an Ivalue expression is an identifi€here are operators which yield Ivalues: for example, if E isxan e
pression of pointer type, thert is an alue expression referring to the object to which E points. The ndwad-*
ue” comes from the assignmentpeession‘E1 = E2’ in which the left operand E1 must be an Ivalupression.
The discussion of each operator beladicates whether it expects Ivalue operands and whether it yields an Ivalue.

6. Corversions

A number of operators maglepending on their operands, causevemion of the alue of an operand from one
type to anotherThis section explains the result to be expected from sualersoons.

C Refeence Manuat 4

6.1 Characterand integers

A char object may be used anywhereiah may be. In all cases ttehar is corverted to anint by propa-
gaing its sign through the upper 8 bits of the resultanganteThis is consistent with the tis complement repre-
sentation used for both characters andgette. (Hevever, the sign-propagation feature disappears in other imple-
mentations.)

6.2 Floatand double

All floating arithmetic in C is carried out in double-precision; wivena float appears in an expression it is
lengthened taouble by zero-padding its fraction. Wherdauble must be coverted tofloat , for example by
an assignment, thaouble is rounded before truncationfioat length.

6.3 Floatand double; integer and character

All int s and char s may be cowmerted without loss of significance titoat or double . Corversion of
float ordouble toint orchar takes place with truncationu@rds 0. Erroneous results can be expected if the
magnitude of the result exceeds 32,767 ifibr) or 127 (forchar).

6.4 Pointerand integers
Integers and pointers may be added and compared; in such a cade fisecorverted as specified in the discus-
sion of the addition operator.

Two pointers to objects of the same type may be subtracted; in this case the reswuiriedon an integer as
specified in the discussion of the subtraction operator.

7. Expressions

The precedence okpression operators is the same as the order of the major subsections of this section (highest
precedence first). Thus the expressions referred to as the operand§7#) are those expressions defined in
§87.1_7.3. Whin each subsection, the operatorsenthe same precedence. Left- or right-associativity is specified
in each subsection for the operators discussed therein. The precedence andviagsafcaditthe expression opera-
tors is summarized in an appendix.

Otherwise the order ofvaluation of epressions is undefined. In particular the compiler considers itself free to
compute subexpressions in the order it betianost efficient, gen if the subexpressionsviolve dde effects.

7.1 Primaryexpressions
Primary expressionsvolving . , —>, subscripting, and function calls group left to right.

7.1.1 identifier

An identifier is a primary expression, provided it has been suitably declared as discussedtbéype is speci-
fied by its declarationHowever, if the type of the identifier is “array of ., then the walue of the identifieexpres-
sion is a pointer to the first object in the ayiand the type of thex@ression is “pointer to...” . Moreover, an aray
identifier is not an Ivalue expression.

Likewise, an identifier which is declared “function returning , when used except in the function-name position
of a call, is cowmerted to “pointer to function returning ..

7.1.2 constant

A decimal, octal, characteor floating constant is a primarx@ession. ltdype isint in the first three cases,
double in the last.

7.1.3 string

A string is a primary epression. Itgype is originally ‘array of char " ; but following the same rule as in §7.1.1
for identifiers, this is modified to “pointer thar " and the result is a pointer to the first character in the string.

7.1.4 (expression)

A parenthesized expression is a primary expression whose typalaedave identical to those of the unadorned
expression. Th@resence of parentheses does not affect whether the expression is an Ivalue.

C Refeence Manuait 5

7.1.5 primary-expression[expression]
A primary expression followed by an expression in square btadk a primary>@ression. Theéntuitive mean-
ing is that of a subscriptUsually, the primary expression has type “pointer td , the subscript expressionirg
and the type of the result is !.””. The expression‘E1[E2]" is identical (by definition) to'* ((E1) + (E2))".
All the clues needed to understand this notation are contained in this section together with the discussions in 8§88
7.1.1,7.2.1, and 7.4.1 on identifiersand + respectiely; §14.3 belav summarizes the implications.

7.1.6 primary-expressioif expression-lisf,)

A function call is a primaryxpression followed by parentheses containing a possibly eegptma-separated
list of expressions which constitute the actugluarents to the function. The primary expression must be of type
“function returning ..” , and the result of the function call is of type."."”’. As indicated belw, a htherto unseen
identifier folloved immediately by a left parenthesis is contextually declared to represent a function returning an in-
teger; thus in the most common case, integer-valued functions need not be declared.

Any actual arguments of typioat are cowmerted todouble before the call; anof typechar are comerted
toint .

In preparing for the call to a function, a gag made of each actual parameter; thus, all argument-passing in C is
strictly by wvalue. Afunction may change the values of its formal parametetshlese changes cannot possibly af-
fect the values of the actual parameters. On the other hand, it is perfectly possible to pass a pointer on the under
standing that the function may change the value of the object to which the pointer points.

Recursie alls to ary function are permissible.

7.1.7 primary-lvalue. member-of-structure

An Ivalue expression followed by a dot followed by the name of a member of a structure is a pxpresgien.
The object referred to by the Ivalue is assumed te e same form as the structure containing the structure mem-
ber The result of the expression is an Ivalue appropriatégebfrom the origin of the gén Ivalue whose type is
that of the named structure memb&he given Ivalue is not required to la any @rticular type.

Structures are discussed in 88.5.

7.1.8 primary-expressior> member-of-structure

The primary-expression is assumed to be a pointer which points to an object of the same form as the structure of
which the membeof-structure is a part. The result is an Ivalue appropriately offset from the origin of the pointed-to
structure whose type is that of the named structure meribertype of the primary-expression need not in fact be
pointer; it is sufficient that it be a pointeharacteror integer.

Except for the relaxation of the requirement that E1 be of pointer type, the expré&ssiorMiOS” is exactly
equialent to “(xE1).MOS”".

7.2 Unaryoperators
Expressions with unary operators group right-to-left.

7.2.1 x expression

The unaryx operator meansdirection: the expression must be a point@rd the result is an Ivalue referring to
the object to which the expression points. If the type of the expression is “pointet tthe type of the result is

7.2.2 & lvalue-expression

The result of the unar§ operator is a pointer to the object referred to by thkibrexpression. Ithe type of the
Ivalue-expression is.'.. ", the type of the result is “pointer to .. .

7.2.3 — expression

The result is the netive d the expression, and has the same type. The type of the expression rhist be
int ,float ,ordouble .

C Refeence Manuail 6

7.2.41 expression

The result of the logical getion operatort is 1 if the value of the expression is 0, O if the value of Xpees-
sion is non-zero. The type of the resulins . This operator is applicable onlyitt s o char s.

7.2.5~ expression

The~ operator yields the oretomplement of its operand. The type of the expression must ber char , and
the result isnt .

7.2.6 ++lvalue-expression

The object referred to by the Ivalue expression is incremented. albe g the n& value of the Ivalue>gres-
sion and the type is the type of thallie. Ifthe expression it orchar , itis incremented by 1; if it is a pointer
to an object, it is incremented by the length of the object. ++ is applicable only to these types. (Not, for example, to
float ordouble .)

7.2.7 — Ivalue-expression
The object referred to by the Ivalue expression is decremented analogously to the ++ operator.

7.2.8 Ivalue-expression ++

The result is the value of the object referred to by the Ivalpeession. Aftetthe result is noted, the object re-
ferred to by the Ivalue is incremented in the same manner as for the prefix ++ operator: byiitfooachar , by
the length of the pointed-to object for a point&€he type of the result is the same as the type of #iladwexpres-
sion.

7.2.9 Ivalue-expressior—

The result of the expression is the value of the object referred to by thalie dipression. Aftethe result is
noted, the object referred to by the Ivalue expression is decremented in a way analogous to the postfix ++ operator.

7.2.10 sizeof expression

The sizeof operator yields the size, in bytes, of its operaWhen applied to an arrathe result is the total
number of bytes in the arrayrhe size is determined from the declarations of the objects irxpinession. Thigx-
pression is semantically an iger constant and may be used anywhere a constant is required. Its major use is in
communication with routines l&kgorage allocators and I/O systems.

7.3 Multiplicative qperators
The multiplicatve gperators-, / , and %group left-to-right.

7.3.1 expression » expression

The binaryx operator indicates multiplication. If both operands iate or char , the result ignt ; if one is
int orchar and onefloat or double , the former is coverted todouble , and the result islouble ; if both
arefloat ordouble , the result islouble . No cther combinations are allowed.

7.3.2 expression/ expression
The binary/ operator indicates dision. Thesame type considerations as for multiplication apply.

7.3.3 expressionyexpression

The binary%operator yields the remainder from the division of the first expression by the second. Both operands
must beint or char , and the result ignt . In the current implementation, the remainder has the same sign as the
dividend.

7.4 Additive gperators
The additve goeratorst and- group left-to-right.

C Refeence Manual 7

7.4.1 expressiont+ expression

The result is the sum of thegressions. lboth operands aiat or char , the result isnt . If both arefloat
or double , the result iglouble . If one ischar orint and one idloat ordouble , the former is coverted to
double and the result idouble . Ifanint orchar is added to a pointethe former is coverted by multiplying
it by the length of the object to which the pointer points and the result is a pointer of the same type as the original
pointer Thus if P is a pointer to an object, the express®hnl” is a pointer to another object of the same type as
the first and immediately following it in storage.

No other type combinations are allowed.

7.4.2 expression— expression

The result is the difference of the operantidoth operands arat , char , float , or double , the same type
considerations as far apply If anint or char is subtracted from a pointehe former is coverted in the same
way as eplained undet above.

If two pointers to objects of the same type are subtracted, the resulvestedn(by division by the length of the
object) to arint representing the number of objects separating the pointed-to objects. Nasioonwill in gen-
eral give inexpected results unless the pointers point to objects in the samesataypointers, een to djects of
the same type, do not necessarily differ by a multiple of the object-length.

7.5 Shiftoperators
The shift operators< and>> group left-to-right.

7.5.1 expression<< expression
7.5.2 expressior>> expression

Both operands must bet or char , and the result isnt . The second operand should be nogéaige. The
value of “E1<<E2" is E1 (interpreted as a bit pattern 16 bits long) left-shifted E2 bits; vacated bits are OFlied.
value of “E1>>E2" is E1 (interpreted as a wis complement, 16-bit quantity) arithmetically right-shifted E2 bit po-
sitions. \Acated bits are filled by a oppf the sign bit of E1. [Note: the use of arithmetic rather than logical shift
does not survie ransportation between machines.]

7.6 Relationabperators

The relational operators group left-to-right, but this fact is not very us&fah<c” does not mean what it seems
to.

7.6.1 expressiorn< expression
7.6.2 expression> expression
7.6.3 expression<= expression
7.6.4 expressiorn>= expression
The operators < (less than), > (greater than), <= (less than or equal to) and >= (greater than or equal to) all yield 0
if the specified relation isafse and 1 if it is true. Operand e@rsion is exactly the same as for th@perator &-
cept that pointers of grkind may be compared; the result in this case depends on theer&latitions in storage of
the pointed-to objects. It does not seem to be very meaningful to compare pointers with integers other than 0.

7.7 Equalityoperators

7.7.1 expression== expression
7.7.2 expression= expression

The== (equal to) and th&= (not equal to) operators are exactly analogous to the relational operateps for
their lower precedence. (Thus “a<b == ¢<d’1 whene&er a<b and c<d he& the same truth-value).

7.8 expression& expression

The & operator groups left-to-right. Both operands musinibe or char ; the result is aint which is the bit-
wise logicaland function of the operands.

C Refeence Manuai 8

7.9 expression” expression

The™ operator groups left-to-right. The operands musinbe or char ; the result is aint which is the bit-
wise exclusie or function of its operands.

7.10 expression| gpression

Thel operatogroups left-to-right. The operands mustitie or char ; the result is aint which is the bit-wise
inclusive or of its operands.

7.11 expression&& expression

The && operator returns 1 if both its operands are non-zero, 0 otherWidée &, && guarantees left-to-right
evduation; morewer the second operand is netiated if the first operand is 0.

The operands need notveathe same type, but each mustdane of the fundamental types or be a pointer.

7.12 expressionll gpression

The || operatoreturns 1 if either of its operands is non-zero, and 0 otherwdsbke |, Il giarantees left-to-right
evduation; morewer, the second operand is negleiated if the value of the first operand is non-zero.

The operands need notveahe same type, but each mustdane of the fundamental types or be a pointer.

7.13 expression? expression. expression

Conditional expressions group left-to-righthe first expression isrduated and if it is non-zero, the result is the
value of the secondxpression, otherwise that of thirdpression. Ifthe types of the second and third operand are
the same, the result has their common type; otherwise the saweeseumrules as for apply. Only one of the sec-
ond and third expressions igaiated.

7.14 Assignmentperators

There are a number of assignment operators, all of which group right-to-left. All require an Ivalue as their left
operand, and the type of an assignmepte&ssion is that of its left operand. The value is the value stored in the left
operand after the assignment has taken place.

7.14.1 Ivalue= expression

The value of the expression replaces that of the object referred to bylthe \rheoperands need notVv&te
same type, but both must e , char , float , double , or pointer If neither operand is a pointghe assign-
ment takes place as expected, possibly preceded lgrsmm of the expression on the right.

When both operands airet or pointers of aykind, no conersion ever takes place; the value of th&mression
is simply stored into the object referred to by ttedue. Thust is possible to generate pointers which will cause ad-
dressing exceptions when used.

7.14.2 Ivalue=+ expression
7.14.3 Ivalue=— expression
7.14.4 Ivalue=+ expression
7.14.5 Ivalue=/ expression
7.14.6 Ivalue=% expression
7.14.7 Ivalue=>> expression
7.14.8 Ivalue=<< expression
7.14.9 Ivalue=& expression
7.14.10lvalue=" expression
7.14.11value=1 expression

The behavior of an expression of the fortE1l'=op E2' may be inferred by taking it as egdient to
“E1 =E1 op E2] however, El is evaluated only once.Moreover, expressions lik “i =+ p’’ in which a pointer is
added to an integeare forbidden.

C Refeence Manuail 9

7.15 expression, expression

A pair of expressions separated by a commavakiated left-to-right and the value of the left expression is dis-
carded. Theaype and value of the result are the type and value of the right operand. This operator groups left-to-
right. It should be @oided in situations where comma iv@i a ecial meaning, for example in actuaj@ments
to function calls (87.1.6) and lists of initializers (810.2).

8. Declarations

Declarations are used within function definitions to specify the interpretation whiche€tgieach identifier;
they do not necessarily resesevdorage associated with the identifi@eclarations hee the form

declaration:
decl-specifies declarator-list, ; ;

The declarators in the declarator-list contain the identifiers being decl@heddecl-specifiers consist of at most
one type-specifier and at most one storage class specifier.

decl-specifiers:
type-specifier
sc-specifier
type-specifier sc-specifier
sc-specifier type-specifier

8.1 Storagelass specifiers
The sc-specifiers are:

sc-specifier:
auto
static
extern
register

The auto, static, andregister declarations also sezvas @finitions in that thg cause an appropriate
amount of storage to be resedv Intheextern case there must be an external definition (see below) foruee gi
identifiers somewhere outside the function in whicly #re declared.

There are some gere restrictions omegister identifiers: there can be at most gister identifiers in an
function, and the type of agister identifier can only biat, char, or pointer (nofloat, double, struc-
ture, function, or array). Also the address-of oper&torannot be applied to such identifieEExcept for these re-
strictions (in return for which one iswerded with fister smaller code), register identifiers bekaes if they were
automatic. Irfact implementations of C are free to treagister as synonymous withuto.

If the sc-specifier is missing from a declaration, it is generally takenaatbe.

8.2 Type specifiers
The type-specifiers are

type-specifier:
int
char
float
double
struct {type-decl-list }
struct identifier { type-decl-list }
struct identifier

Thestruct specifier is discussed in 88.5. If the type-specifier is missing from a declaration, it is genegally tak
to beint .

C Refeence Manuat 10

8.3 Declarators
The declarator-list appearing in a declaration is a comma-separated sequence of declarators.

declarator-list:
declarator
declarator, declarator-list

The specifiers in the declaration indicate the type and storage class of the objects to which the declarators refer
Declarators hee the syntax:

declarator:
identifier
* declarator
declarator()
declarator[constant-expressigp]
(declarator)

The grouping in this definition is the same as in expressions.

8.4 Meaningf declarators

Each declarator is taken to be an assertion that when a construction of the same form as the declarator appears in
an expression, it yields an object of the indicated type and storage class. Each declarator xactigiose identi-
fier; it is this identifier that is declared.

If an unadorned identifier appears as a declartden it has the type indicated by the specifier heading the decla-
ration.

If a declarator has the form
* D
for D a declaratgrthen the contained identifier has the type “pointer.td,.where *..."" is the type which the
identifier would hae had if the declarator had been simply D.
If a declarator has the form

D()

then the contained identifier has the type “function returnihgwhere “..."” i s the type which the identifierould
have had if the declarator had been simply D.

A declarator may hge the form

D[constant-expression]
or
D[]

In the first case the constantpeession is an expression whose value is determinable at compile time, and whose
type isint. in the second the constant 1 is used. (Constant expressions are defined precisely Sugis)
declarator makes the contained identifierentgpe *array” |1f the unadorned declarator D would specify a nen-ar

ray of type “ .., then the declaratofD[i] ’ yields a 1-dimensional array with rankf objects of type'!..”. If

the unadorned declarator Douwld specify ann-dimensional array with rank xi,x...xi then the declarator
“Dli,,]" yields an §+1) -dimensiona&rray with rank, xi,x...xi xi_.

An array may be constructed from one of the basic types, from a péiotara structure, or from another array
(to generate a multi-dimensional array).

Finally, parentheses in declarators do not alter the type of the contained identifier except insofadte tihe
binding of the components of the declarator.

Not all the possibilities allsed by the syntax abe ae actually permitted. The restrictions are as follows: func-
tions may not return arrays, structures or functions, althoughmibg return pointers to such things; there are no ar
rays of functions, although there may be arrays of pointers to functidkewise a structure may not contain a
function, but it may contain a pointer to a function.

C Refeence Manuat 11

As an example, the declaration

int i, «ip,f (), =fipQ), (xpfiX)

declares an ingeri, a pointerip to an intger, a functionf returning an intger, a functionfip returning a pointer to
an integerand a pointepfi to a function which returns an integeklso

float fa[17], *afp[17];
declares an array fibat numbers and an array of pointerdltmt numbers. Finally
static int x3d[3][5][7];

declares a static three-dimensional array of integers, with réd¥73 In complete detailx3dis an array of three
items: each item is an array ofdiarays; each of the latter arrays is an array wérsintegers. Aty of the expres-
sions x3d”, “x3d[i]’, “x3d[i][j]’, “x3d[i][j][k] ' may reasonably appear in arpeession. Thdirst three
have type “array”, the last has typiat .

8.5 Structuraleclarations
Recall that one of the forms for a structure specifier is

struct {type-decl-list }
Thetype-decl-lisis a sequence of type declarations for the members of the structure:

type-decl-list:
type-declaration
type-declaration type-decl-list

A type declaration is just a declaration which does not mention a storage class (the stordgeenthss bf struc-
ture” here being understood by context).

type-declaration:
type-specifier declarator-list

Within the structure, the objects declaregiehaldresses which increase as their declarations are read left-to-right.
Each component of a structure begins on an addressing boundary appropriate to its typeeD®hlthie only re-
qguirement is that non-characters begin on a word boundary; therefore, there may be 1-byte, unnamed holes in a
structure, and all structuresveaan even length in bytes.

Another form of structure specifier is
struct identifier { type-decl-list }

This form is the same as the one just discussed, except that the identifier is rememberstluasutbeag of the
structure specified by the lisA subsequent declaration may then beegiusing the structure tag but without the
list, as in the third form of structure specifier:

struct identifier

Structure tags alle definition of self-referential structures; thelso permit the long part of the declaration to be
given once and used geral times. It is haever absurd to declare a structure which contains an instance of itself, as
distinct from a pointer to an instance of itself.

A simple example of a structure declaration, taken from 816.2 where its use is illustrated maise fully

struct tnode {

char tword[20];

int count;

struct thode *|eft;
struct tnode *right;

h

which contains an array of 20 characters, argent@nd two pointers to similar structures. Once this declaration has

C Refeence Manuat 12

been gren, the following declaration makes sense:
struct tnode s, *Sp;

which declaresto be a structure of thevgn sort andspto be a pointer to a structure of theemi sort.

The names of structure members and structure tags may be the same as ordinary variables, since a distinction can
be made by conte However, names of tags and members must be distinct. The same member name can appear in
different structures only if the twmembers are of the same type and if their origin with respect to their structure is
the same; thus separate structures can share a common initial segment.

9. Statements
Except as indicated, statements atecated in sequence.

9.1 Expressiostatement
Most statements are expression statements, whihttea form

expression;

Usually expression statements are assignments or function calls.

9.2 Compoundtatement
So that seeral statements can be used where one is expected, the compound statement is provided:

compound-statement:
{ statement-list }

statement-list:
statement
statement statement-list

9.3 Conditionaktatement
The two forms of the conditional statement are

if (expression) statement
if (expression) statemenelse statement

In both cases the expressionvsleated and if it is non-zero, the first substatemenkésiged. Inthe second case
the second substatement xeauted if the expression is 0. As usual tieése” ambiguity is resolved by connecting
anelse with the last encountered elseléss

9.4 Whilestatement
Thewhile statement has the form

while (expression) statement

The substatement ixecuted repeatedly so long as the value of the expression remains non-zero. Thedest tak
place before eachxecution of the statement.

9.5 Dostatement
Thedo statement has the form

do statementhile (expression) ;

The substatement ixecuted repeatedly until the value of theeession becomes zero. The test takes place after
each gecution of the statement.

C Refeence Manuat 13

9.6 For statement
Thefor statement has the form

for (expression—gpt; expression-gpt ; exoression—gpt) statement
This statement is equélent to

expression-1;

while (expression-2 {
statement
expression-3

}

Thus the first xpression specifies initialization for the loop; the second specifies a test, made before each iteration,
such that the loop is exited when themssion becomes 0; the third expression typically specifies an incrementa-
tion which is performed after each iteration.

Any or dl of the expressions may be droppedl missing expression-2makes the impliedvhile clause equr
alent to ‘while(1)”; other missing expressions are simply dropped from the expansiva abo

9.7 Switchstatement

Theswitch statement causes control to be transferred to onevefsstatements depending on the value of an
expression. Ihas the form

switch (expression) statement

The expression must et or char . The statement is typically compounBach statement within the statement
may be labelled with case prefixes as follows:

case constant-expression

where the constant expression mustrite or char . No two o the case constants in a switch mayehtae same
value. Constanéxpressions are precisely defined in §15.

There may also be at most one statement prefix of the form
default :

When theswitch statement isxecuted, its expression iva@uated and compared with each case constant in an un-
defined order If one of the case constants is equal to the value of the expression, control is passed to the statement
following the matched case prefix. If no case constant matches the expression, and if tdefault a prefix,

control passes to the prefixed statement. In the absenadetddt prefix none of the statements in the switch is
executed.

Case or default prefixes in themselves do not alter theoficontrol.

9.8 Breakstatement
The statement

break ;

causes termination of the smallest enclositgje , do, for , or switch statement; control passes to the state-
ment following the terminated statement.

9.9 Continusstatement
The statement

continue ;

causes control to pass to the loop-continuation portion of the smallest englbdimg, do, or for statement; that
is to the end of the loop. More preciséatyeach of the statements

C Refeence Manuail 14

while (..)) { do { foor(..) {
con't.ir.1:; conti.ri :;. contin.:;. .
} } while(..); }

acontinue is equivalent to “goto contin”.

9.10 Returrstatement
A function returns to its caller by means of taeirn statement, which has one of the forms

return ;
return (expression) ;

In the first case no value is returned. In the second case, the value of the expression is returned to the caller of the
function. Ifrequired, the expression is erted, as if by assignment, to the type of the function in which it appears.
Flowing of the end of a function is eqaient to a return with no returned value.

9.11 Gotostatement
Control may be transferred unconditionally by means of the statement
goto expression;

The expression should be a label (889.12, 14.4) oxaression of type “pointer t;nt " w hich evaluates to a la-
bel. Itis illegd to transfer to a label not located in the current function unless some extra-language provision has
been made to adjust the stack correctly.

9.12 Labelledstatement
Any statement may be preceded by label prefixes of the form
identifier:
which sere to declare the identifier as a label. More details on the semantics of labelgearn@l4.4 belav.

9.13 Nullstatement
The null statement has the form

A null statement is useful to carry a label just before thedf a compound statement or to supply a null body to a
looping statement such ahile

10. External definitions

A C program consists of a sequence of external definitions. External definitions masebéogifunctions, for
simple variables, and for array$hey are used both to declare and to reseterage for objectsAn external defi-
nition declares an identifier to Ve dorage clasextern and a specified type. The type-specifier (88.2) may be
empty in which case the type is taken toibe .

10.1 Externafunction definitions
Function definitions hae the form

function-definition:
type—specifi%t function-declarator function-body

A function declarator is similar to a declarator for a “function returnih@xcept that it lists the formal parameters
of the function being defined.

function-declarator:
declarator(parameter-lisf,)

parameter-list:

C Refeence Manuat 15

identifier
identifier, parameter-list

The function-body has the form

function-body:
type-decl-list function-statement

The purpose of the type-decl-list is torgithe types of the formal parametefdo other identifiers should be de-
clared in this list, and formal parameters should be declared only here.

The function-statement is just a compound statement which maydbelarations at the start.

function-statement:
{ declaration-list,, statement-list }

A simple example of a complete function definition is

intmax (a, b, c)

inta, b, c;
{ |
int m;
m = (a>b)? a:b;
returnprec? m:c);
}

Here ‘int’’ is the type-specifier;max(a, b, c)"is the function-declarator;ifnt a, b, c;’ is the type-decl-list for the
formal parameters; “{.. }" i s the function-statement.

C corverts allfloat actual parameters ttouble , so formal parameters declarfidat have their declaration
adjusted to readouble . Also, since a reference to an array iy eontext (in particular as an actual parameter) is
taken to mean a pointer to the first element of the ademtarations of formal parameters declared “array bfare
adjusted to read “pointer to”... Finally, because neither structures nor functions can be passed to a function, it is
useless to declare a formal parameter to be a structure or function (pointers to structures or functions are of course
permitted).

Afreereturn statement is supplied at the end of each function definition, so runitiee @nd causes control,
but no value, to be returned to the caller.

10.2 Externatlata definitions
An external data definition has the form

data-definition:

extern . type-specifigy, init-declarator-list, ;

The optionakextern specifier is discussed in 8 11.2. I¥gi, the init-declarator-list is a comma-separated list of
declarators each of which may be followed by an initializer for the declarator.

init-declarator-list:
init-declarator
init-declarator, init-declarator-list

init-declarator:
declarator initializer,,
Each initializer represents the initial value for the corresponding object being defined (and declared).
initializer:
constant
{ constant-expression-list }

C Refeence Manuat 16

constant-expression-list:
constant-expression
constant-expression constant-expression-list

Thus an initializer consists of a constaatued expression, or comma-separated list of expressions, inside braces.
The braces may be dropped when the expression is just a plain cofi$targxact meaning of a constarpees-
sion is discussed in §15. The expression list is used to initialize arrays; sge belo

The type of the identifier being defined should be compatible with the type of the initialierble constant
may initialize afloat or double identifier; a non-floating-point expression may initializeimain , char , or
pointer.

An initializer for an array may contain a comma-separated list of compile-tipressions. Théength of the ar
ray is talen to be the maximum of the number of expressions in the list and the square-bracketed constant in the ar
ray’s declarator This constant may be missing, in which case 1 is used. The expressions initialize \sioeassi
bers of the array starting at the origin (subscript 0) of the.aiifag acceptable expressions for an array of tigpe
ray of ..” are the same as those for type™. As a gecial case, a single string may beegias he initializer for an
array ofchar s; in this case, the characters in the string are taken as the initializing values.

Structures can be initializedubthis operation is incompletely implemented and machine-depenBaaically
the structure is garded as a sequence obmls and the initializers are placed into thoseds. Structurénitializa-
tion, using a comma-separated list in braces, is safe if all the members of the structurgerednigointers but is
otherwise ill-advised.

The initial value of ay externally-defined object not explicitly initialized is guaranteed to be O.

11. Scopeules

A complete C program need not all be compiled at the same time: the source text of the program may be kept in
several files, and precompiled routines may be loaded from libraGesnmunication among the functions of a pro-
gram may be carried out both through explicit calls and through manipulation of external data.

Therefore, there are twkinds of scope to consider: first, what may be calledekieal scopeof an identifier
which is essentially the gé&on of a program during which it may be used without drawing “undefined identifier’
agnostics; and second, the scope associated with external identifiers, which is characterized by the rule that refer
ences to the same external identifier are references to the same object.

11.1 Leical scope

C is mot a block-structured language; this may fairly be considered a defect. The lexical scope of names declared
in external definitionsxends from their definition through the end of the file in whicly gppear The lexical
scope of names declared at the head of functions (either as formal parameters or in the declarations heading the
statements constituting the function itself) is the body of the function.

It is an error to redeclare identifiers already declared in the current context, unless tlexlaeation specifies
the same type and storage class as already possessed by the identifiers.

11.2 Scopef externals

If a function declares an identifier to b&tern , then somewhere among the files or libraries constituting the
complete program there must be an external definition for the idenfiiiunctions in a gien program which re-
fer to the samexternal identifier refer to the same object, so care must be taken that the type and extent specified in
the definition are compatible with those specified by each function which references the data.

In PDP-11 C, it is explicitly permitted for (compatiblexternal definitions of the same identifier to be present in
several of the separately-compiled pieces of a complete progranveorwice within the same program file, with
the important limitation that the identifier may be initialized in at most one of the definitions. In other operating sys-
tems, havever, the compiler must kne in just which file the storage for the identifier is allocated, and in which file
the identifier is merely being referred to. In the implementations of C for such systems, the appeararee of the
tern keyword before anxernal definition indicates that storage for the identifiers being declared will be allocat-
ed in another file. Thus in a multi-file program, ateenal data definition without thextern specifier must ap-
pear in exactly one of the file#\ny other files which wish to ge an external definition for the identifier must in-
clude theextern in the definition. The identifier can be initialized only in the file where storage is allocated.

In PDP-11 C none of this nonsense is necessary anektiken specifier is ignored in external definitions.

C Refeence Manuat 17

12. Compilercontrol lines

When a line of a C program begins with the charattéfris interpreted not by the compiler itself, but by a pre-
processor which is capable of replacing instancesvehddentifiers with arbitrary token-strings and of inserting
named files into the source program. In order to cause this preprocessorvokba, iit is necessary that thery
first line of the program lggn with#. Since null lines are ignored by the preprocesthis line need contain no oth-
er information.

12.1 Token replacement
A compiler-control line of the form

define identifier token-string

(note: no trailing semicolon) causes the preprocessor to replace subsequent instances of the identifiervaith the gi
string of tolens (except within compiler control lines). The replacement token-string has commentedrémm

it, and it is surrounded with blanks. No rescanning of the replacement string is attempted. This facility &unost v
able for definition of “manifest constants”, as in

define tabsize 100

int table[tabsize]:

12.2 Fileinclusion

Large C programs often contain nyagxternal data definitions. Since the lexical scope of external definitions e
tends to the end of the program file, it is good practice to put allkthenal definitions for data at the start of the
program file, so that the functions defined within the file need not repeat tedious amfcereodeclarations for
each external identifier theuse. Itis also useful to put a heavily used structure definition at the start and use its
structure tag to declare tla@ito pointers to the structure used within functiod®. further exploit this technique
when a large C program consists ofesal files, a compiler control line of the form

i nclude" filename'

results in the replacement of that line by the entire contents of tiigefieme

13. Implicit declarations

It is not alvays necessary to specify both the storage class and the type of identifiers in a declacatietimes
the storage class is supplied by the contextxiereal definitions, and in declarations of formal parameters and
structure members. In a declaration inside a function, if a storage atass type is gien, the identifier is assumed
to beint ; if a type hut no storage class is indicated, the identifier is assumedatatbe An exception to the latter
rule is made for functions, sin@uto functions are meaningless (C being incapable of compiling code into the
stack). Ifthe type of an identifier is “function returning' ..it is implicitly declared to bextern

In an expression, an identifier folled by(and not currently declared is contextually declared tdfimection
returningint "

Undefined identifiers not followed bl are assumed to be labels which will be defined later in the function.
(Since a label is not an Ivalue, this accounts for ‘thealue required’error message sometimes noticed when an
undeclared identifier is used.) Naturaligpearance of an identifier as a label declares it as such.

For some purposes it is best to consider formal parameters as belonging tavinsiocage class. In practice, C
treats parameters as if thevere automatic (except that, as mentionedvgffmrmal parameter arrays afidat s
are treated specially).

14. Types revisited
This section summarizes the operations which can be performed on objects of certain types.

C Refeence Manuat 18

14.1 Structures

There are only tavthings that can be done with a structure: pick out one of its members (by means airthe
operators); or takits address (by unag). Otheroperations, such as assigning from or to it or passing it as a pa-
rametey draw an @ror messageln the future, it is expected that these operations, but not necessarily others, will be
allowed.

14.2 Functions

There are only tav things that can be done with a function: call it, oet#k address. If the name of a function
appears in an expression not in the function-name position of a call, a pointer to the function is generated. Thus, to
pass one function to anothene might say

int f():

90;
Then the definition of might read

g(f uncp
int(«funcp));
{

(«funcpX);
} L

Notice thatf was declared explicitly in the calling routine since its first appearance was not followed by

14.3 Arrayspointers, and subscripting

Every time an identifier of array type appears ingression, it is corerted into a pointer to the first member of
the array Because of this cemrrsion, arrays are notdlues. Bydefinition, the subscript operatfr is interpreted
in such a way thatE1[E2]" i s identical to “x((E1) + (E2))". Becauseof the cowersion rules which apply te, if
El is an array and E2 an igtg, then E1[E2] refers to the E2-th member of E1. Therefore, despite its asymmetric
appearance, subscripting is a commugatperation.

A consistent rule is followed in the case of multi-dimensional arrays. If E is-dimensional array of rank
ixjx...xk, then E appearing in an expression isvetted to a pointer to amf{1)-dimensional array with rank
jx...xk. If the = operatoy either explicitly or implicitly as a result of subscripting, is applied to this pqitierre-
sult is the pointed-tont-1)-dimensional arrgwhich itself is immediately caerted into a pointer.

For example, consider
int x[3][5];

Herex is a %5 aray of integers. Wherx appears in anx@ression, it is corerted to a pointer to (the first of three)
5-membered arrays of irgers. Inthe expression')[i] ’, which is equvalent to ‘= (x+i)", x s first cowerted to a
pointer as described; théns corverted to the type ok, which involves multiplyingi by the length the object to
which the pointer points, namely 5 integer objedthe results are added and indirection applied to yield an array
(of 5 integers) which in turn is ceerted to a pointer to the first of the igers. Ifthere is another subscript the
same argument applies again; this time the result is an integer.

It follows from all this that arrays in C are storedraise (last subscript varies fastest) and that the first subscript
in the declaration helps determine the amount of storage consumed by an array but plays no other part in subscript
calculations.

14.4 Labels

Labels do not hae a ype of their own; theare treated as having typarray ofint ”. Label variables should be
declared “pointer tant " ; before execution of agoto referring to the ariable, a label (or an expression dierg
from a label) should be assigned to the variable.

Label variables are a bad idea in generalsthiéch statement makes them almostals unnecessary.

C Refeence Manuat 19

15. Constantexpressions

In several places C requires expressions whigHueate to a constant: aftease, as array bounds, and in ini-
tializers. Inthe first tw cases, the expression camalve anly integer constants, character constants,sarabf
expressions, possibly connected by the binary operators

+ — x [/ % & | << >>

or by the unary operators

— ~

Paentheses can be used for grouping, but not for function calls.

A bit more latitude is permitted for initializers; besides constant expressions as discusgedrebhoan also ap-
ply the unary& operator to external scalars, and to external arrays subscripted with a coqstsgien. Thenary
& can also be applied implicitly by appearance of unsubscripted external arrays. The rule here is that initializers
must @auate either to a constant or to the address of an external identifier plus or minus a constant.

16. Examples.
These examples are intended to illustrate some typical C constructions as well as a serviceable style of writing C
programs.

16.1 Innemproduct
This function returns the inner product of its array arguments.

double inner (v1,v2n)
doublevl [] , v 2[];

{
double sum;
inti;
sum =0.0;
for (i=0 i<n; i ++)
sum =+ vl * vt
returnsumy;
}

The following version is somewhat more efficient, but perhaps a little less teses the facts that parameter ar
rays are really pointers, and that all parameters are passed by value.

double inner (v1,v2n)
double *v1, =*v2Z

{
double sum;
sum=0.0;
whileh —-)
sum =+ *vl1++ * xV2++;
returnsumy,
}

The declarations for the parameters are realhcity the same as in the lagaeple. Inthe first case array declara-
tions ‘[]’ were gven to enphasize that the parameters would be referred to as arrays; in the second, pointer dec-
larations were gen because the indirection operator and ++ were used.

16.2 Tree and character processing

Here is a complete C progragecourtesy of R. HaighHt which reads a document and produces an alphabetized list
of words found therein together with the number of occurrences of earch Whemethod keeps a binary tree of
words such that the left descendant tree for eantd was all the words lexicographically smaller than thengi
word, and the right descendant has all the largeds: Boththe insertion and the printing routine are rect&si

The program calls the library routingstchar to pick up characters aradit to terminate xecution. Printf is

C Refeence Manuat 20

called to print the results according to a format stridgiersion ofprintf is given below (816.3).

Because all thexéernal definitions for data arevgh at the top, nceextern

declarations are necessary within the

functions. D day within the rules, a type declaration isegi for each non-integer function when the function is
used before it is defineddowever, snce all such functions return pointers which are simply assigned to other point-
ers, no actual harmould result from leaving out the declarations; the supposedlyfunction values would be as-

signed without error or complaint.

define nwords 100 / * number of different words */
define wsize 20 / * max chars per word */
struct tnode { / » the basic structure */
chartword [wsiz€}
int count;;
struct tnode *|eft
struct tnode *right
1
struct tnode space [n words} / = the words themselves */
int nnodes nwords ; /= number of remaining slots */
struct tnode *spacep space / = next available slot */
struct tnode *freep; * free list */
| %

= The main routine reads words until end-of-file
+ "tree" is called to sort each word into the tree.

(" \0" returned from "getchar")

*/
main()
{
struct tnode *top, xtreg();
char c, word [wsize}
inti;
i=top=0;
while (c=getchar))
if ("a<=c&&c<="7" ‘Alk=c&&c<=7Z) {
if (i<wsize -1)
wordi ++] = c;
} else
it (i) {
wordi ++] = "\0;
top = tree (t op,word);
i=0;
}
tprinttop);
}
| %

x The central routine. If the subtree pointer is null, allocate a new node for it.

* |If the new word and the node’s word are the same, increase the node’s count.
* Otherwise, recursively sort the word into the left or right subtree according

* as the argument word is less or greater than the node’s word.

*/
struct tnode *tregp, word)
struct tnode *P;
charword [] ;
{
struct tnode *alloq);
int cond;
/ = Is pointer null? */

if (p==0) {

p = alloo);

C Refeence Manuat 21

copyfword, p—>tword,
p—>count=1,
p—>right=p —>left=0;

return);
/ = Is word repeated? */
if ((cond=comparp —>tword,word)) == 0){
p—>count ++;
return);
/ = Sort into left or right */
if (cond<Q
p—>left = tree (p —>left, word);
else
p—>right = tree (p —>right, word);
returnp);
}
| %

* Print the tree by printing the left subtree, the given node, and the right subtree.
*/

tprintp)
struct tnode *P;
while (p) {
tprintp —>lefi)
print{'%d: %s\n", p —>count,p —>tword),
p = p->right
}
}
| %
* String comparison: return number (>, =,<)0
* according as sl (>, =, <) s2
*/

comparnsl, s2
char =*sl, =s2

intcl, c2;
while((¢ 1l = »sl++) == (C2 = %S2++))
if (cl==1\0)
return();
returnc2 —-cl),
}
| =

* String copy: copy sl into s2 until the null
» character appears.

*/

copysl, s2?

char =*sl, =*s2

while(*S2++ = xsl++);
}
/
*» Node allocation: return pointer to a free node.
* Bomb out when all are gone. Just for fun, there
* is a mechanism for using nodes that have been
x freed, even though no one here calls "free."
*/
struct tnode *alloq)

*

C Refeence Manuait 22

{
struct tnode *t;
if (freep {
t = f reep
freep = freep —>left
returng;
}
if (——nnodes<0) {
printf{'Out of space\n");
exitft);
returnspacep ++);
}
| *
* The uncalled routine which puts a node on the free list.
*/
free)
struct tnode *P;
{
p—>left = freep;
freep=p;
}

To illustrate a slightly dierent technique of handling the same problem, we will repeat fragments okahiple
with the tree nodes treated explicitly as members of an. afitagy fundamental change is to deal with the subscript
of the array member under discussion, instead of a pointer to itstilee ~ declaration becomes

struct tnode {
chartword [wsiz€}

int count;
int left;
int right;
h
andalloc becomes
alloq)
{ .
intt;
t = —--nnodes;
if (t<=0 {
printf{'Out of space\n");
exi();
}
returng;
}

Thefree stuff has disappeared because if we deal wiitlusively with subscripts some sort of map has to bptk
which is too much trouble.

Now thetreeroutine returns a subscript also, and it becomes:

treefp, word)

charword [] ;

{

int cond;
if (p==0) {

p = alloa);
copyiword, spacep]twordy

C Refeence Manuat 23

spacefplcount = 1;
spaceplright = spacepleft = 0;
return();
}
if ((c ond=comparspacep}tword, word)) == 0){
spacefplcount ++;
return);
}
if (cond<Q
spacefp] left = t reespacep}left, word)
else
spacefplright = t reespacep}right, word),
return);

}

The other routines are changed similaiiymust be pointed out that thigrsion is noticeably less efficient than the
first because of the multiplications which must be done to computefsat wfspacecorresponding to the sub-
scripts.

The observation that subscriptbike “a[i]’’) are less efficient than pointer indirectigtike “xap”) holds true
independently of whether or not structures awelired. Thereare of course mansituations where subscripts are
indispensable, and others where the loss in effigiesnworth a gain in clarity.

16.3 Formatted output

Here is a simplified version of thwintf routine, which is aailable in the C library It accepts a strind character
array) as first argument, and prints subsequegirments according to specifications contained in this format string.
Most characters in the string are simply copied to the output; two-character sequences beginriitg witbcify
that the next argument should be printed in a style as follows:

%d decimahumber

%0 octalnumber

%c Ascll characteror 2 characters if upper character is not null
%s string(null-terminated array of characters)

%f floating-pointnumber

The actual parameters for each function call are laid out contiguously in increasing storage locations; therefore, a
function with a variable number ofgarments may takthe address of say) its first argument, and access the re-
maining arguments by use of subscriptifirggading the aguments as an arrayor by indirection combined with

pointer incrementation.

If in such a situation the arguments/darixed types, or if in general one wishes to insist that aludvshould be
treated as having awgh type, therstruct declarations lik those illustrated belowill be useful. It should be e
ident, though, that such techniques are implementation dependent.

Printf depends as well on the fact tlthiar andfloat arguments are widened respeely to int anddou-
ble , so here are déctively only two szes of aguments to deal withPrintf calls the library routineputcharto
write out single characters aftdato dispose of floating-point numbers.

printffmt, args)
charfmt [] ;

char =s;

struct { char *x charpp, h
struct { double ~»doublep, ¥
int xap, x, C;

ap = &args [= argument pointer */
for (5;){
while((c= *fmt++) | = "%) {
ifc == "\0)

C Refeence Manuail 24

putchar();

switch (¢ = »fmt ++) {
[~ decimal «/
case ‘d”:
X = *xap++;
iffx <0) {
X = =X;
ifx<0) { [+ is - infinity
printf(’ -32768"
continue

}

putchar(-;
}
printdX);

continue

/= octal =/

case '0":
printo(*ap++);
continue

/ » float, double */

case f :
/ = let ftoa do the real work */
ftoal +ap.doublep ++);
continug

[» character */

case ‘¢c’;
putchar xap++);
continue

[+ string */

case 's’:
s = =*ap.charpp ++;
whilec = xS++)

putchar();

continue

}
putchar();

}

| %

* Print n in decimal ; N must be non-negative
*/

printd()
{

inta;
if (a=n/10)

printd@);
putchan%10 + 0%

| *
x Print n in octal, with exactly 1 leading 0
*/
printa()
{
if (n)
printo (n >>3&017777)
putchaf (n &07+"0%;

*/

C Refeence Manuat 25

REFERENCES

Johnson$. C., and Kernighan, B. W'The Programming Language”’BC omp. Sci. ‘Bch. Rep. #8., Bell Labo-
ratories, 1972.

Ritchie,D. M., and Thompson, K. L The uNix Time-sharing Systeth.C. ACM 7, 17, July 1974, pp.
365-375.

PetersonT. G., and Lesk, M. E."A Users Cuide to the C Language on the IBM 370.nternal Memoran-
dum, Bell Laboratories, 1974.

ThompsonkK. L., and Ritchie, D. M.uNix Programmers Manual. Bell Laboratories, 1973.
Lesk,M. E., and Barres, B. A® TheccosC Library” I nternal memorandum, Bell Laboratories, 1974.

Kernighan, B. W “Programming in € A Tutorial” U npublished internal memorandum, Bell Laboratories,
1974.

C Refeence Manuait 26

APPENDIX 1
Syntax Summary

1. Expressions.

expression:
primary
* expression
& expression
— expression
I expression
~ expression
++ lvalue
——Ivalue
Ivalue ++
Ivalue——
sizeof expression
expression binop expression
expression? expression. expression
Ivalue asgnop expression
expression, expression

primary:
identifier
constant
string
(expression)
primary (- expression-lisf,)
primary[expression]
Ivalue. identifier
primary —> identifier

Ivalue:
identifier
primary[expression
Ivalue. identifier
primary —>identifier
* expression
(Ivalue)

The primary-expression operators
on.— =

have highest priority and group left-to-right. The unary operators
*x & - !~ 4+ —— sizeof

have mriority below the primary operators but higher thary #mary operatgrand group right-to-left.Bina-
ry operators and the conditional operator all group left-to-right, avel fnarity decreasing as indicated:

binop:
* / %
+ -
>> <<
< > <= >=

C Refeence Manuat 27

\
&&

I
?

Assignment operators all Yethe same priorityand all group right-to-left.

asgnop:
= =4+ == =% =/ =0 =>> =<< =& =" =

The comma operator has the lowest prigdhd groups left-to-right.
2. Declarations.

declaration:
decl-specifies declarator-list,, ;

decl-specifiers:
type-specifier
sc-specifier
type-specifier sc-specifier
sc-specifier type-specifier

sc-specifier:
auto
static
extern
register

type-specifier:
int
char
float
double
struct { type-decl-list }
struct identifier { type-decl-list }
struct identifier

declarator-list:
declarator
declarator, declarator-list

declarator:
identifier
* declarator
declarator()
declarator[constant-expressiQp]
(declarator)

type-decl-list:
type-declaration
type-declaration type-decl-list

type-declaration:
type-specifier declarator-list
3. Statements.

statement:
expression;
{ statement-list }

C Refeence Manuait 28

if (expression) statement
if (expression) statementlse statement

while (
for (

expression) statement
expression), ; expression ; expression,) s tatement

switch (expression) statement
case constant-expression statement
default : statement

break ;

continue ;

return ;

return (expression) ;

goto expression;
identifier: statement

statement-list:

statement
statement statement-list

4. Externaldefinitions.

program:

exernal-definition
external-definition pogram

external-definition:

function

-definition

data-definition

function-definition:
type—specifi%t function-declarator function-body

function-declarator:
declarator(parameter-lisf,)

parameter-list:

identifier
identifier, parameter-list

function-body:

type-decl-list function-statement

function-statement:
{ declaration-list , statement-list }

data-definition:

extern type-specifigy, init-declarator-list, , ;

init-declarator-list:
init-declarator
init-declarator, init-declarator-list

init-declarator:

declarator initializer,,

initializer:

constant
{ constant-expression-list }

C Refeence Manuat 29

constant-expression-list:
constant-expression
constant-expression constant-expression-list

constant-expression:
expression

5. Preprocessor
define identifier token-string

i nclude" filenamé'

C Refeence Manuat 30

APPENDIX 2
Implementation Peculiarities

This Appendix briefly summarizes thefdifences between the implementations of C orptirel1 underunix and
on theHis 6070 undecos it includes some known bugs in each implementation. Each enteyad by an indi-
cator as follows:

o cCcQ

hard to fix

Gcosversion should probably be changed
UNIX version should probably be changed
Inherent difference likely to remain

This list was prepared by M. E. Lesk, S. C. Johnson, E. N. Pinson, and the author.

A. Bugs or differences from C langgagecifications

hg
hg
g
hg
u

hug

A1)
A.2)

A.3)
A.4)
A.5)

A.6)

Gcosdoes not do type cearsions in “?:”.

Gcoshas a bug ifnt andreal comparisons; the numbers are compared by subtraction, and
the difference must nowerflow.

Whenx is afloat , the construction “test 2x : x” i s illegd on Gcos

“ pl->p2 =+ 2’ causes a compiler erravhere pl and p2 are pointers.

OnuNiIx, the expression in @turn statement isiot corverted to the type of the function, as
promised.

entry statement is not implemented at all.

B. Implementation differences

d
d
d

«Q o

CcCCcQQ

[(eN(e}

B.1)
B.2)
B.3)

B.4)
B.5)

B.6)
B.7)
B.8)
B.9)

B.10)
B.11)

Sizef character constants differnix: 2, Gcos 4.

Table sizes in compilers differ.

char s andint s havedifferent sizeschar s ae 8 bits orunix, 9 on Gcos words are 16 bits
on UNIX and 36 onccos There are corresponding differences in representatiofieadf s
anddouble s.

Charactearrays stored left to right in a word@tos right to left inuNIx.

Passing of floats and doublesfdifs; UNIX passes on stackcospasses pointer (hidden to nor
mal user).

Structuresind strings are aligned on a word boundamnirx, not aligned inccos
GCOSpreprocessor supports #rename, #esaaype; has only #define, #include.
Preprocessas not invoked on UNIX unless first character of file is “#”.

Theexternal definition “static int .. is legd on GCOS but gets a diagnostic anNix. (On
GCcosit means an identifier global to the routines in the fileibvisible to routines compiled
separately.)

Acompound statement @tosmust contain one “,’but onuNix may be empty.
Onacoscase distinctions in identifiers andywords are ignored; oaNIX case is significant
evaywhere, with leywords in lower case.

C. Syntax Differences

g

QO Cc @

c1)

c2)
c3)
C4)
C5)
C.6)

UNIX allows broader classes of initialization; ggosan initializer must be a constant, name,
or string. Similarly, Gcosis much stickier about wanting braces around initializers and in par
ticular they must be present for array initialization.

“int extern’ illegd on Gcos must hae “extern int’ (storage class before type).

External®on Gcosmust hae a ype (not defaulted tmt).

Gcosallows initialization of internastatic ~ (same syntax as for external definitions).
integer->... is not allowed ocos

Someoperators on pointers are gia on GCos(<, >).

QG Q

C7)
C8)
C.9)

C Refeence Manuat 31

register storage class means somethingiarx, but is not accepted aecos

Scopeholes: “int x; f() {int x;}’ "is illegd on uNIX but defines two variables orécos
Whenfunction names are used as argumentsng, ether “fname’ or ‘‘&fhame” may be
used to get a pointer to the function; ®oos*“ &fname’ generates a doubly-indirect pointer
(Note that both are wrong since the °& supposed to be supplied for free.)

D. Operating System Dependencies

d

D.1)

D.2)

Gcosallocates external scalars by SYMRERIX allocates external scalars as labelled com-
mon; as a result there may be maminitialized external definitions of the same variable on
UNIX but only one onccos

Externahames differ in allvable length and character set; amix, 7 characters and both cas-
es; onGCcos6 characters and only one case.

E. Semantic Differences

hg
d
d

d

E.1)
E2)
E.3)

E4)

“int i, *p; p=i; i=p;” does nothing owNIx, does something oacos(destrys right half of i) .
“>>"" means arithmetic shift ooNix, logical onGcos

Whenachar is corverted to intger, the result is alays positve an Gcosbut can be ngdive
ONUNIX.

Arguments of subroutines arealiated left-to-right orccos right-to-left onuNix.

