The Unix I/O System

Dennis M. Ritchie
Bell Telephone Laboratories

This paper gies an aerview of the workings of the Unix 1/0O systenit was written with an eye ¥eard providing
guidance to writers of device der routines, and is oriented moreMad describing the environment and nature of
device drvers than the implementation of that part of the file system which deals with ordinary files.

It is assumed that the reader has a goodvladge of the werall structure of the file system as discussed in the pa-
per “The Unix Time-sharing SysteinM oreover the present document is intended to be used in conjunction with a
copy of the system code, since it is basically aegesis of that code.

Device Classes

There are tw dasses of déce: block and character. The block interface is suitable for devicesliéisks, tapes,

and DECtape which ark, or can work, with addressible 512-byte blocks. Ordinary magnetic tape just barely fits in
this catgory, since by use of forward backward spacing &lock can be read,ven though blocks can be written

only at the end of the tape. Block devices can at least potentially contain a mounted file system. The interface to
block devices is very highly structured; thevers for these devices share a great yrmautines as well as a pool of
buffers.

Charactettype devices hae a nuch more straightforward interface, although mooekwmust be done by the der
itself.

Devices of both types are named bynajor and aminor device number These numbers are generally stored as a
word with the minor device number as thelbyte and the major device number as the high bytee major deice
number selects which dgr will deal with the device; the minor device number is not used by the rest of the system
but is passed to the drér at gppropriate times.Typically the minor number selects a subdevice attached tea gi
controller or one of sgeral similar hardware interfaces.

The major device numbers for block and characteicde are used as indices in separate tablegbtita start at 0
and thereforeerlap.

Overview of 1/0

The purpose of thepenandcreatsystem calls is to set up entries in three separate system tables. The first of these
is theu dfile table, which is stored in the systanper-process data area This table is indeed by the file descrip-

tor returned by thepenor creat,and is accessed duringead, write or other operation on the open file. An entry
contains only a pointer to the corresponding entry ofikhéable, which is a pesystem data base. There is one en-

try in thefile table for each instance openor creat. This table is pesystem because the same instance of an open
file must be shared among theaal processes which can result fréonks after the file is openedA file table en-

try contains flags which indicate whether the filzsvopen for reading or writing or is a pipe, and a count which is
used to decide when all processes using the enigythianinated or closed the file (so the entry can be abandoned).
There is also a 32-bit file offset which is used to indicate where in the file the next read or writeevdlidek Fi-

nally, there is a pointer to the entry for the file in thedetable, which contains a cppf the file's i-node. Notice

that an entry in théle table corresponds precisely to an instancepeior creat; if the same file is openedveeal

times, it will have veal entries in this tableHowever, there is at most one entry in til@detable for a gien file.

Also, a file may enter theodetable not only because it is open, but also because it is the current directory of some
process or because it is a special file containing a currently-mounted file system.

An entry in theinodetable differs somewhat from the corresponding i-node as stored on the disk; the modified and
accessed times are not stored, and the entry is augmented by a flag word containing information aboutathe entry
count used to determine when it may be allowed to disapgehthe device and i-number whence the entry came.

2 - Unix I/O System

During the processing of apenor creatcall for a special file, the systenwalys calls the dédce’s openroutine to

allow for ary special processing required (rewinding a tape, turning on the data-terminal-ready lead of a modem,
etc.). Havever, thecloseroutine is called only when the last process closes a file, that is, when the i-node table en-
try is being deallocated. Thus it is not feasible forageto maintain, or depend on, a count of its users, although

it is quite possible to implement an excligsuse device which cannot be reopened until it has been closed.

When aread or write takes place, the useraguments and théle table entry are used to set up tregiables

u.u baseu.u count,andu.u ofsetwhich respectiely contain the (user) address of the I/O target area, the byte-
count for the transfeand the current location in the filéf the file referred to is a character-type special file, the ap-
propriate read or write routine is called; it is responsible for transferring data and updating the count and current lo-
cation appropriately as discussed bel®therwise, the current location is used to calculate a logical block number

in the file. If the file is an ordinary file the logical block humber must be mapped (possibly using an indirect block)
to a plysical block number; a block-type special file need not be mappedy kveant, the resulting physical block
number is used, as discussed felo read or write the appropriate device.

Character devicedrivers

The cdevswtable specifies the interface routines present for characteede Eachdevice provides fie routines:
open, close, read, write, and special-functiémy of these may be missing. If a call on the routine should be ig-
nored, (e.g.openon non-&clusive devices which require no setup) thdevswentry can be gen as nulldev; if it
should be considered an err@@.g. write on read-only devices)odevis used.

The openroutine is called each time the file is opened with the fullcdenumber as gument. Thesecond aju-
ment is a flag which is non-zero only if the device is to be written upon.

The closeroutine is called only when the file is closed for the last time, that is when the very last process in which
the file is open closes it. This means it is not possible for thier do maintain its own count of its users. The first
argument is the déce number; the second is a flag which is non-zero if the file was open for writing in the process
which performs the finallose.

Whenwrite is called, it is supplied the device agument. Theperuser ariableu.u counthas been set to the num-
ber of characters indicated by the user; for character devices, this number may be O intiaigsds the address
supplied by the user from which to start taking characters. The system may call the routine inserthalylag
u.u_seflgis supplied which indicates, @, thatu.u baseefers to the system address space instead of the user’s.

The write routine should cop up © u.u countcharacters from the ussrtuffer to the device, decrementing
u.u_countor each character passegor most drivers, which work one character at a time, the routine

cpass()

is used to pick up characters from the stunffer. Successie alls on it return the characters to be written until
u.u_countgoes to 0 or an error occurs, when it returhs Cpasstakes care of interragingu.u_sgflg and updating
u.u count.

Write routines which want to transfer a probably large number of characters into an intéferainly also use the
routine

iomove(bufferoffset, count, flag)

which is faster when marcharacters must be med. lomovetransfers up t@ountcharacters into thbuffer start-
ing offsetbytes from the start of theuffer; flag should beB WRITE (which is 0) in the write case. Caution: the
caller is responsible for making sure the count is not tayeland is non-zero. As anfiefency note, iomoveis
much slower if ap of buffer+offset, counbr u.u bases odd.

The deice’s read routine is called under conditions similarviwite, except thatu.u countis guaranteed to be non-
zero. D return characters to the ustte routine

passc(c)

is available; it takes care of housekeepingeldpassand returns-1 as he last character specified by counts re-
turned to the user; before that time, O is returriechoveis also usable as witlrrite; the flag should b& READ
but the same cautions apply.

The “special-functions’routine is ivoked by the sttyandgtty system calls as follows:

Unix I/O System - 3

(*p) (dev, v

wherep is a pointer to the déce’s routine,devis the device numbgandv is a \ector In thegtty case, the device is
supposed to place up to 3 words of status information intoetti®ry this will be returned to the calldn the stty
casey is 0; the device should takup to 3 vords of control information from the arrayu_ag[0...2].

Finally, each device should ke gpropriate interrupt-time routined¥hen an interrupt occurs, it is turned into a C-
compatible call on the d&ess interrupt routine. The interrupt-catching mechanism esake low-order four bits
of the ‘new PS” word in the trap vector for the interruptailable to the interrupt handleiThis is conentionally
used by drers which deal with multiple similar gi&ces to encode the minor device numbafter the interrupt has
been processed, a return from the interrupt handler will return from the interrupt itself.

A number of subroutines argailable which are useful to charactewie drivers. Mostof these handlers, foxe
ample, need a place taffer characters in the internal interface between their “top’ l{fa#ad/write) and‘bottom

half” (interrupt) routines.For relatively low data-rate devices, the best mechanism is the character queue main-
tained by the routinegetc andputc. A queue header has the structure

struct {
int c cc; [* character count */
char *c cf; /*first character */
char *c cl; /* last character */
} queue;

A character is placed on the end of a queue by
putc(c, &queue)

wherec is the character arglieueis the queue headefhe routine returnsl if there is no space to put the charac-
ter, 0 aherwise. Thdirst character on the queue may be retdeay

getc(&queue)
which returns either the (non-getive) character or-1 if the queue is empty.

Notice that the space for characters in queues is shared among all devices in the system and in the standard systen
there are only some 600 character sletil@ble. Thusdevice handlers, especially write routines, museteke to
avad gobbling up excesst rumbers of characters.

The other major helpvailable to device handlers is the sleep-wakeup mechanism. The call
sleep(event, priority)

causes the process to wait (allowing other processes to run) umtietiteccurs; at that time, the process is neark
ready-to-run and the call will return when there is no process with higioeity.

The call
wakeup(event)

indicates that theventhas happened, that is, causes processes sleeping earttimde wakened. Thesventis an
arbitrary quantity agreed upon by the sleeper and Hiemp. By corvention, it is the address of some data area
used by the dver, which guarantees thavents are unique.

Processes sleeping on am@ should not assume that thexa has really happened; thshould check that the con-
ditions which caused them to sleep no longer hold.

Priorities can range from 127 +d4.27; a higher numericabhiue indicates a lessaffared scheduling situationA pro-
cess sleeping at gdive piority cannot be terminated for ymeason, although it is conedble that it may be
swapped out.Thus it is a bad idea to sleep withgaiive mriority on an @ent which might neer occur. On the other
hand, calls tsleepwith non-ngative priority may never return if the process is terminated by some signal in the
meantime. Incidentallyt is a goss error to cableepin a routine called at interrupt time, since the process which is
running is almost certainly not the process which should go to slélepwise, none of the variables in the user area
“u.” should be touched, let alone changed, by an interrupt routine.

If a device dwer wishes to wait for somevent for which it is incomenient or impossible to supplyveakeup (for
example, a device going on-line, which does not generally cause an interrupt), the call

4 - Unix I/0O System

sleep(&lbolt, priority)

may be gien. Lboltis an external cell whose addressvimkeaed once wery 4 seconds by the clock interrupt rou-
tine.

The routines

spl4(), spl5(), spl6(), spl7()
are aailable to set the processor prioritwébas indicated to @oid incorvenient interrupts from the device.
If a device needs to kmoabout real-time intervals, then

timeout(func, ag, interval)

will be useful. This routine arranges that afteerval sixtieths of a second, tHencwill be called witharg as agu-
ment, in the style

(*func)(arg)

Timeouts are used, for example, to provide real-time delays after function charaeteesdilne and tab in type-

writer output, and to terminate an attempt to read the 201 Dataplpdhéhere is no response within a specified
number of seconds. Notice that the number of sixtieths of a second is limited to 32767, since it must appear to be
positive, and that only a bounded number of timeouts can be going on at Aiw®.the specifieduncis called at
clock-interrupt time, so it should conform to the requirements of interrupt routines in general.

An example

The driver for the paper-tape reader/punch is worth examining as a fairly simple exampleyadfrttamtechniques
used in writing character device handlef$ie pcllstructure contains a state (used for the reader), an input queue,
and an output queué structure, rather than three individuanables, was used to cut down on the numbexk-of e
ternal symbols which might be confused with symbols in other routines.

When the file is opened for reading, th@enroutine checks to see if its state is GMOSED;if so an error is re-
turned since it is considered a bad idea to ktraépeople read one tape simultaneoudllie state is set ta/AT-

ING, the interrupt is enabled, and a character is requested. The reason fanthisig that there is no direciaw

to determine if there is grtape in the reader or if the reader is on-line. In these situations an interrupt will occur
immediately and an error indicated. As will be seen, the interrupt routine ignores errors if theVgETeNss, but

if a good character comes in while in WA TING state the interrupt routine sets the statREADING. Thusopen

loops until the state changes, meanwhile sleeping on the “lightning tallf. If it did not sleep at all, it wuld
prevent ary other process from running until the reader came on-line; if it depended on the interrupt routike to w

it up, the effect would be the same, since the error interrupt is almost instantaneous.

The open-write case is much simpler; the punch is enabled and a 100-character leader is pungiweadsng

The closeroutine is also simple; if the reader was opery, amcollected characters are flushed, the interrupt is
turned off, and the state is set@GhOSED. In the write case a 100-character trailer is punched. The routine has a
bug in that if both the reader and punch are oglesewill be called only once, so that either the leéiocharacters

are flushed or the trailer is punchedt bot both. It is hard to seewudo fix this problem except by making the
reader and punch separate devices.

The pcreadroutine tries to pick up characters from the input queue and passes them back untilsheadseall is
satisfied. Ifthere are no characters it checks whether the state has go@¢&,tohich means that the interrupt rou-
tine detected an error in tRREADstate (assumed to indicate the end of the tape). ffcseadreturns; either during
this call or the next one no characters will be passed back, indicating an endbfiffidestate is stiREADINGthe
routine enables another character by fiddling the desieater control registgprovided it is not actie, and goes to
sleep.

When a reader interrupt occurs and the staféAJ ING, and the deice’s aror bit is set, the interrupt is ignored; if

there is no error the state is seRBADING,as indicated in the discussionmfread. If the state iREADINGand

there is an errothe state is set tBOF; it is assumed that the error represents the end of the tape. If thereds no er

ror, the character is picked up and stored in the input queue. Then, provided the number of characters already in the
gueue is less than the high-water mA@IHWAT, the reader is enabled again to read another charddter strate-

gy keeps the tape moving without flooding the input queue with unread char&éetelty, the top half is wakened.

Unix I/O System - 5

Looking again apcread,notice that the prioritylevel is raised byspl4()to prevent interrupts during the loopThis

is done because of the possibility that the input queue is eangtyust after the EOF test is made an error interrupt
occurs because the tape runs othensleepwill be called with no possibility of eakeup.In general the processor
priority should be raised when a routine is about to slegjiiag some condition where the presence of the condi-
tion, and the consequenwbkeup|s indicated by an interrupt. The danger is that the interrupt might occur between
the test for the condition and the calkteep,so that thevakeupapparently neer happens.

At the same time it is a bad idea to raise the processor priordyft& an extended period of time, sincevides
with real-time requirements may be shut out so long as to cause anlére@creadroutine is perhapsverzealous
in this respect, although since most device lzapiority level higher than 4 this difficulty is not very important.

The pcwriteroutine simply gets characters from the user and passes thmoutput,which is separated out so that
pcleadercan call it also.Pcoutputchecks for errors (I aut-of-tape) and if none are present makes sure that the
number of characters in the output queue doesxueieedPCOHWAT; if it does,sleepis called. Then the character

is placed on the output queue. There is a small bug here ipcinatiputdoes not check that the charactesveuc-

cessfully put on the queue (all character-queue space might be empty); perhaps in this case it might be a good idea to
sleep on the lightning-bolt until things quietwdn Finally pcstartis called, which checks to see if the punch is cur

rently busyand if not starts the punching of the first character on the output queue.

When punch interrupts occuacpintis called,; it starts the punching of thexneharacter on the output queue, and if
the number of characters remaining on the queue is less thamwtheatier markPCOLWATIt wakes up the write
routine, which is presumably waiting for the queue to empty.

The Block-device I nterface

Handling of block deices is mediated by a collection of routines which manage a satfefscontaining the im-

ages of blocks of data on the variousides. Themost important purpose of these routines is to assure treaalse
processes which access the same block of the same device in multiprogrammed fashion maintain a conwsistent vie
of the data in the blockA secondary but still important purpose is to increase thgeafoy of the system by dep-

ing in-core copies of blocks which are being accessed frequdmté/main data base for this mechanism is the table

of buffersbuf. Each luffer header contains a pair of pointéosforw b back)which maintain a doubly-linked list

of the luffers associated with a particular block device, and a pair of pof@terorw av_back)which generally
maintain a doubly-linked list of blocks which ati€e,” that is, eligible to be reallocated for another transaction.
Buffers which hae /O in progress or areuby for other purposes do not appear in this list. TUf'ebheader also
contains the device and block number to which tiféebrefers, and a pointer to the actual storage associated with
the uffer. There is a wrd count which is the getive d the number of words to be transferred to or from the
buffer; there is also an error byte and a residual word count used to communicate information from an 1/O routine to
its caller Finally, there is a flag word with bits indicating the status of thiéeb These flags will be discussed be-

low.

Six routines constitute the most important part of the iaterfvith the rest of the syster@iven a cevice and block
numbery both breadandgetblk return a pointer to auffer header for the block; the difference is thiadis guaran-
teed to return alsfer actually containing the current data for the block, wipelk returns a bffer which contains
the data in the block only if it is already in core (whether it is or not is indicated By B@NEDbit; see belw). In
either case theuffer, and the corresponding device block, is mddasy,” so that other processes referring to it are
obliged to wait until it becomes fre&etblkis used, for example, when a block is about to be totallyitten, so
that its previous contents are not useful; still, no other process can be allowed to refer to the block untildtee ne
is placed into it.

Given a pinter to a bffer, the brelseroutine makes theuffer again gailable to other processe#t is called, for &-
ample, after data has been extracted followitigead. There are three subtly-&&fent write routines, all of which
take a huffer pointer as argument, and all of which logically release tifferbfor use by others and place it on the
free list. Bwrite puts the hffer on the appropriate device queu@jta/ for the write to be done, and sets the aser’
ror flag if required.

Bawrite places the wiffer on the deice’s queue, but does not wait for completion, so that errors cannot be reflected
directly to the userBdwrite does not start gnl/O operation at all, but merely marks thédfer so that if it happens
to be grabbed from the free list to contain data from some other block, the data in it will first be written out.

Bwrite is used when one wants to be sure that I/O takes place cqraadtiat errors are reflected to the proper us-
er; it is used, for example, when updating i-nodBawrite is useful when more #fiencgy is desired (because no

6 - Unix I/O System

wait is required for 1/O to finish) but when it is reasonably certain that the write is really reqBuledite is used
when there is doubt that the write is needed at the morreniexample,bdwrite is called when the last byte of a
write system calldlls short of the end of a block, on the assumption that anetitewill be given soon which will
re-use the same block. On the other hand, as the end of a block is paes#djs called, since probably the block
will not be accessed again soon and one might as well start the writing process as soon as possible.

In ary event, notice that the routinegblk andbreaddedicate the gen block exclusively to the use of the caller
and mak ahers wait, while one dfrelse bwrite, bawrite, or bdwrite must eentually be called to free the block for
use by others.

As mentioned, eachuffer header contains a flag word which indicates the status ofiffeg bSince the provide
one important channel for information between theedsi and the block 1/0 system, it is important to understand
these flags. The following names are manifest constants which select the associated flag bits.

B_READ

This bit is set when theuffer is handed to the device strategy routine (seeetindicate a read operatioithe
symbolB WRITE s defined as 0 and does not define a flag; it igigeed as a mnemonic cesnience to callers of
routines likeswapwhich have a gparate argument which indicates read or write.

B DONE

This bit is set to 0 when a block is handed to the the devicegstradatine and is turned on when the operation
completes, whether normally as the result of an ettas dso used as part of the return argumergatiblk to indi-
cate if 1 that the returned buffer actually contains the data in the requested block.

B ERROR

This bit may be set to 1 whd DONE s set to indicate that an I/O or other error occuriédt is set theb error
byte of the bffer header may contain an error code if it is non-zéird error is O the nature of the error is not
specified. Actuallyno driver at present setb _earor; the latter is provided for a future immement whereby a more
detailed error-reporting scheme may be implemented.

B BUSY

This bit indicates that theulfer header is not on the free list, i.e. is dedicated to someex@usive wse. The
buffer still remains attached to the list of blocks associated with its deviveydro Whengetblk (or bread,which

calls it) searches theuffer list for a gven device and finds the requested block with this bit on, it sleeps until the bit
clears.

B WANTED

This flag is used in conjunction with tlBe BUSYbit. Beforesleeping as described just abogetblk sets this flag.
Corversely, when the block is freed and the busy bit goes dowbrgise)a wakeupis given for the block header
whenaer B WANTED s on. This strategemwids the @erhead of having to callvakeupevey time a lffer is
freed on the chance that someone might want it.

B ASYNC

This bit is set bypawriteto indicate to the appropriateviiee driver that the buffer should be released when the write
has been finished, usually at interrupt tinfde difference betwednwrite andbawriteis that the former starts 1/O,
waits until it is done, and frees thefter. The latter merely sets this bit and starts 1/0. The bit indicatesdisat
should be called for the buffer on completion.

B DELWRI

This bit is set byodwrite before releasing theuffer. Whengetblk, while searching for a free block, dis@os the bit

is 1 in a buffer it would otherwise grab, it causes the block to be written out before reusing it.

B XMEM

This is actually a mask for the pair of bits which contain the high-oraebite/of the physical address of the origin

Unix I/O System - 7

of the buffer; these bits are an extension of the 16 address bits elsewhere in the buffer header.

B RELOC

This bit is currently unused; it previously indicated that a system-wide relocation conatatd te added to the
buffer address. It was needed during a period when addresses of data in the system (includifeyghevére
mapped by the relocation hardware to a physical address differing from its virtual address.

Block Device Drivers
Thebdevswable contains the names of the interface routines and that of a table for each block device.

Just as for character devices, block deviceetsimay supply ampenand acloseroutine called respeegtly on
each open and on the final close of theide Insteadf separate read and write routines, each block devieer dri
has astrategyroutine which is called with a pointer to after header as gument. Addiscussed, theuffer header
contains a read/write flag, the core address (includitended-memory bits), the block numparnegaive) word
count, and the major and minorvitee number The rde of the strategy routine is to carry out the operation as re-
quested by the information in theffer header When the transaction is complete 8eDONE (and possibly the

B _ERROR)bits should be set. Then if tlBe ASYNChit is set,brelseshould be called; otherwiseakeup.In cases
where the device is capable, under error-free operation, of transfemirg Mierds than requested, thevide’s
word-count register should be placed in the residual count slot ofuffer beader; otherwise, the residual count
should be set to OThis particular mechanism is really for the benefit of the magtaper;dnhen reading this de-
vice records shorter than requested are quite normal, and the user should be told the actual length of the record.
[However the mechanism has not been integrated into normaMé®an magtape and is used only inaw” 1/O as
discussed bela]

Notice that although the most usual argument to the strategy routines is a geffi@nédader allocated as dis-
cussed abee, dl that is actually required is that thegament be a pointer to a place containing the appropriate in-
formation. Fr example theswaproutine, which manages wement of core images to and from theagpping de-

vice, uses the strategy routine for thizide. Carehas to be taken that no extraneous bits get turned on in the flag
word.

The deice’s table specified bjpdevswhas a byte to contain an aetiflag and an error count, a pair of links which
constitute the head of the chain afffers for the deice (b forw b back),and a first and last pointer for avie

gueue. Othese things, all are used solely by theicke driver itself except for the uffer-chain pointers.Typically

the flag encodes the state of the device, and is used at a minimum to indicate that the device is currently engaged in
transferring information and nowecommand should be issued@he error count is useful for counting retries when

errors occur The device queue is used to remember stacked requests; in the simplest case it may be maintained as a
first-in first-out list. Since wffers which hae been handedwer to the strategy routines arevee on the list of free

buffers, the pointers in theuffer which maintain the free ligav forw av_back)are also used to contain the point-

ers which maintain the device queues.

A couple of routines are provided which are useful to block devigerdri
iodone(bp) ,

arranges that theulfer to whichbp points be released owakened, as appropriate, when the strategy module has
finished with the bffer, either normally or after an erro(In the latter case the ERRORbit has presumably been
set.)

When the device conforms to some rather loose standards adhered to by certain DEC hardware, the routine
devstart(bp, devloc, devblk, hbcom)

is useful. Herebpis the address of thauffer headerdevlocis the address of the slot in the device registers which
accepts a perhaps-encoded device block nyrdbeblkis the block numbeiand hbcomis a quantity to be stored in
the high byte of the déce’s mmmand rgister It is understood, when using this routine, that the devigesters

are laid out in the order

command register

word count

core address

block (or track or sector)

8 - Unix I/O System

where the address of the last correspondietoc. Moreover, the device should correspond to the RR, and RF
devices with respect to its layout of extended-memory bits and structure of read and write commands.

The routine
geterror(bp)

can be used to examine the error bit iruids header and arrange thayanror indication found therein is reflected
to the user It may be called only in the non-interrupt part of averivhen 1/0 has complete@® DONEhas been
set).

An example

The RF disk duier is worth studying as the simplest example of a block I/@cge Itsstrategyroutine checks to

see if the requested block liesybad the end of the device; the size of the disk, in this instance, is indicated by the
minor device numberlf the request is plausible, theffer is placed at the end of the device queue, and if the disk is
not running/fstart is called.

Rfstartmerely returns if there is nothing to do, but otherwise sets thieedactive flag, loads the addresstension
register and callsdevstartto perform the remaining tasks attendant on beginning a data transfer.

When a completion or error interrupt occutftr is called. If an error is indicated, and if the error count has not
exceeded 10, the same transaction is reattempted; otherwise the error bitfitheee was no error or if 1@iling
transfers hae been issued the queue is advancedréstdrt is called to begin another transaction.

Raw Block-device | /O

A scheme has been set up whereby block devieerdrmay preide the ability to transfer information directly be-
tween the uses’ ore image and the device without the useudfdss and in blocks as large as the caller requests.
The method imolves setting up a character-type special file corresponding tovitaevice and preiding read and
write routines which set up what is usually avpie, non-shareduffer header with the appropriate information and
call the deice’s drategy routine. If desired, separatpenandcloseroutines may be pruided but this is usually un-
necessaryA special-function routine might come in handspecially for magtape.

A great deal of work has to be done to generate the “appropriate inforrh&gipat in the argumentuifer for the
stratggy module; the worst part is to map relocated user addresses to physical addresses. Most of this work is done

by
physio(strat, bp, de rw)

whose arguments are the name of the strategy rattetethe huffer pointerbp, the device numbetev, and a read-

write flagrw whose walue is eitheB READ or B WRITE. Physianakes sure that the usease address and count

are @en (because most devices work in words) and that the core &etedfis contiguous in physical space; it de-
lays until the kffer is not lusy, and makes it busy while the operation is in progress; and it sets up user error return
information.

The magtape drér is the only one which as of this writing provides & 120 capability; gien physio,the work in-

volved is trizial, and amounts to passing back to the user information on the length of the record read or written.
(There is some funniness because the magtape, uniquely among DEC devices, works in bydeds.haPuttingn

raw 1/0O for disks should be equally triviakeept that the disk address has to be carefully checked te amakit

does not verflow from one logical device to another on which the caller may net Wate permission.

