YACC - Yet Another Compiler-Compiler

Stephen C. Johnson

Bell Laboratories,
Murray Hill, New Jerse 07974

ABSTRACT

Computer program input generally has some structurecin dery computer pro-
gram which does input can be thought of as defining an “input langwageh it ac-
cepts. Thenput languages may be as conxpdes a pogramming language, or as simple
as a sequence of numbetdnfortunately sandard inputdcilities are restricted, difult
to use and change, and do not completely check their inputs for validity.

Yacc provides a general tool for controlling the input to a computer progiEme.
Yacc user describes the structures of his input, together with code which is tolee in
when each such structure is recogniz¥dcc turns such a specification into a subroutine
which may be imoked to handle the input process; frequenttyis corvenient and appro-
priate to hae nost of the flav of control in the user’s application handled by this subrou-
tine.

The input subroutine produced bwe¢ calls a user supplied routine to return the
next basic input item. Thus, the user can specify his input in terms ofidodl input
characters, oiif he wishes, in terms of higherve constructs such as names and num-
bers. Theuser supplied routine may also handle idiomatic features such as comment and
continuation cowventions, which typically defy easy specification.

Yacc is written in C[7], and runs under UNIX. The subroutine which is output may
be in C or in Ratfor[4], at the user’s choice; Ratfor permits translation of the output sub-
routine into portable értran[5]. Theclass of specifications accepted iseayvgeneral
one, called LALR(1) grammars with disambiguating rul&e theory behind Yacc has
been described elsewhere[1,2,3].

Yacc was originally designed to help produce tfrerit end’ of compilers; in ad-
dition to this use, it has been successfully used inyragplication programs, including a
phototypesetter language, a document nerigystem, a Fortran debugging system, and
the Ratfor compiler.

YACC - Yet Another Compiler-Compiler

Stephen C. Johnson

Bell Laboratories,
Murray Hill, New Jerse 07974

Section 0: Introduction

Yacc provides a general tool for imposing structure on the input to a computer programacthe Y
user prepares a specification of the input process; this includes rules which describe the input structure,
code which is to be Wioked when these structures are recognized, andideeel routine to do the basic in-
put. Yacc then produces a subroutine to do the input procedure; this subroutine, gatsdraalls the
usersupplied lov-level input routine (called thkxical analyzer)o pick up the basic items (calléokens)
from the input stream. These tokens amgaoized according to the input structure rules, cafjesmmar
rules; when one of these rules has been recognized, then the user code supplied for this rule,amlled an
tion, is invoked; actions hee the ability to return values and neaise of the values of other actions.

The heart of the input specification is a collection of grammar riesh rule describes an ailo
able structure and\gs it a rmme. Br example, one grammar rule might be

date : month name day °,” year

Here, date, month name, dand year represent structures of interest in the input process; presumably
month nameday and year are defined elshere. Thecomma*,” i s quoted by single quotes; this implies
that the comma is to appear literally in the input. The colon and semicolon mereyasquwnctuation in

the rule, and hae ro ggnificance in controlling the input. Thus, with proper definitions, the input

July 4,1776

might be matched by the almle.

As we mentioned alve, an mportant part of the input process is carried out by the lexical analyzer
This user routine reads the true input stream, recognizing those structures which are weorenttynor
more efficiently recognized directlgnd communicates these recognized tokens to the pdsehistori-
cal reasons, the name of a structure recognized by ttoall@analyzer is called germinal symbohame,
while the name of a structure recognized by the parser is cafledterminal symbahame. avoid the
obvious confusion of terminologwe shall usually refer to terminal symbol namega@en names.

There is considerable l\eay in deciding whether to recognize structures by the lexical analyzer or by
a gammar rule. Thus, in the abexample it would be possible toveaher rules of the form

month name : "Ja" 'n" ;
month name : 'Fe” b ;

month name : '‘D’e” ¢ ;

Here, the lexical analyzer would only need to recognizevithaial letters, and month name would be a
nonterminal symbol. Rules of this sort tend to be a b#teful of time and space, and magrerestrict the
power of the input process (although yteee easy to write).For a nore efficient input process, thexieal
analyzer itself might recognize the month names, and return an indication that amaorglwas seen; in
this case, month name would be a token.

Literal characters, such ds', must also be passed through the lexical analyper are considered
tokens.

As an eample of the flexibility of the grammar rule approach, we might add to the abecifica-
tions the rule

date : month/" day /" year ;
and thus optionally alle the form
71411776
as a synonym for
July 4, 1776

In most cases, this werule could be “slipped in'to a working system with minimal effort, and a&ny
small chance of disrupting existing input.

Frequentlythe input being read does not conform to the specifications due to errors in theltmput.
parsers produced bya¥c hae the very desirable property that yhill detect these input errors at the-ear
liest place at which this can be done with a left-to-right scan; thus, not only is the chance of reading and
computing with bad input data substantially reduced thee bad data can usually be quickly fourdaror
handling &cilities, entered as part of the input specifications, frequently permit the reentry of bad data, or
the continuation of the input process after skippivegy the bad data.

In some cases, Yacc fails to produce a parser when gi ®t of specificationsFor example, the
specifications may be self contradictooy they may require a more powerful recognition mechanism than
that available to Yacc. Theformer cases probably represent true design errors; the latter cases can often be
corrected by making the lexical analyzer more powerful, or Wyitieg some of the grammar rule3he
class of specifications which Yacc can handle compares seo@ably with other systems of this type;
moreover, the constructions which are difficult for Yacc to handle are also frequently difficult for human be-
ings to handle. Some usersvhaeported that the discipline of formulatinglid Yacc specifications for
their input reealed errors of conception or design early in the progrardajament.

The next seeral sections describe the basic process of preparing a Yacc specification; Section 1 de-
scribes the preparation of grammar rules, Section 2 the preparation of the user supplied actions associated
with these rules, and Section 3 the preparation of lexical analyzers. In Section 4, we discuss the diagnostics
produced when Yacc is unable to produce a parser from ¥be giecifications. Thissection also de-
scribes a simple, frequently useful mechanism for handling operator precedgectsn 5 discusses error
detection and resery. Sections 6C and 6R discuss the operatingrenment and special features of the
subroutines which Yacc produces in C and Ratéspectiely. Section 7 gves ome hints which may lead
to better designed, more efficient, and clearer specificatiginglly, Section 8 has a brief summanAp-
pendix A has a briefxample, and Appendix B tells tvato run Yacc on the UNIX operating systerAp-
pendix C has a brief description of mechanisms and syntax which are no longgy acipported, bt
which are provided for historical continuity with older versions of Yacc.

Section 1: Basic Specifications

As we noted abgee, names refer to either tokens or nonterminal symbgégc requires those names
which will be used as token names to be declared as sueudition, for reasons which will be discussed
in Section 3, it is usually desirable to include the lexical analyzer as part of the specification file; it may be
useful to include other programs as well. Thugnespecification file consists of three sections:dbela-
rations, (grammar) rulesandprograms. The sections are separated by double per@éft” marks. (The
per-cent “%’ is generally used in Yacc specifications as an escape character.)

In other words, a full specification file looks like

declarations
%%

rules

%%
programs

The declaration section may be emptjoreover, if the programs section is omitted, the second %%
mark may be omitted also; thus, the smallegdl [€acc specification is

%%
rules

Blanks, tabs, and newlines are ignored except thgtrtiag not appear in names or multi-character
resened symbols. Comments may appear whara nrame or operator isdgl; they are enclosed in /* . . .
*/, as in C and PL/I.

The rules section is made up of one or more grammar rAlgsammar rule has the form:
A : BODY ;

A represents a nonterminal name, and BQBpresents a sequence of zero or more names and literals.
Notice that the colon and the semicolon are Yacc punctuation.

Names may be of arbitrary length, and may be made up of letterS; dahtlerscore’'’’, and non-

initial digits. Notice that ¥cc considers that upper and lower case letters are distinct. The names used in
the body of a grammar rule may represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single qudtesAs in C, the backslash\" is an es-

cape character within literals, and all the C escapes are recognized. Thus

\n” representaewline

\r' representseturn

" representsingle quote
V' representbackslash “\”
" representtab

“\b" representbackspace
“\Xxx” represents “xxX’in octal

For a rumber of technical reasons, the nul character ("\O" or 000) shawdidb@eitsed in grammar rules.

If there are seeral grammar rules with the same left hand side, #héical bar Y’ can be used to
avad rewriting the left hand side. In addition, the semicolon at the end of a rule can be dropped before a
vertical bar Thus the grammar rules

A:BCD ;
AEF ;
A:G ;
can be gien to Yacc as
A: BCD|
EF
G;

It is not necessary that all grammar rules with the same left side appear together in the grammar rules sec-
tion, although it makes the input much more readable, and easy to change.

If a nonterminal symbol matches the empty string, this can be indicated in the obvious way:

empty : ;

As we mentioned alve, names which represent tokens must be declared as such. The singglest w
of doing this is to write

%token namehame?2. ..

in the declarations section. (See Sections 3 and 4 for much more discugsiery).name not defined in
the declarations section is assumed to represent a nonterminal syinbglthe end of the rules section,
some nonterminal symbol has not appeared on the leftyafuéey then an error message is produced and
Yacc halts.

The left hand side of thfi'st grammar rule in the grammar rules section has special importance; it is
taken to be the controlling nonterminal symbol for the entire input process; in technical language it is called
the start symbol.In effect, the parser is designed to recognize the start symbol; thus, this symbol generally
represents the largest, most general structure described by the grammar rules.

The end of the input is signaled by a speciatiplcalled thendmarker.If the tokens up to, but not
including, the endmask form a structure which matches the start symbol, the parser subroutine returns to
its caller when the endmarker is seen; we say tlaciptghe input. If the endmarker is seen iryather
context, it is an error.

It is the job of the user suppliedkieal analyzer to return the endmarker when appropriate; see sec-
tion 3, belov. Frequently the endmarker token represents some reasonably obvious I/O status, such as
“ end-of-file’ or *‘end-of-record”.

Section 2: Actions

To each grammar rule, the user may associate an action to be performed each time the rule is recog-
nized in the input processhis action may return a value, and may obtain the values returnedvioyupre
actions in the grammar rule. In addition, the lexical analyzer can return values for tokens, if desired.

When irvoking Yacc, the user specifies a programming language; curr&attior and C are sup-
ported. Anaction is an arbitrary statement in this language, and as such can do input and output, call sub-
programs, and alter external vectors and variables (recall treat@ment’in both C and Ratfor can be
compound and do mgrdistinct tasks). An action is specified by an equal sigr at the end of a gram-
mar rule, followed by one or more statements, enclosed in curly bra¢cesd{*} ’. For example,

A:"(B’)Y ={hello(1, "abc"); }
and

XXX: YYY 22Z =
{

printf("a message\n");
flag = 25;
}

are grammar rules with actions in 8.grammar rule with an action need not end with a semicoloicin f
it is an error to hae a @micolon before the equal sign.

To facilitate easy communication between the actions and the, ghesaction statements are altered
slightly. The symbol “dollar sigr”‘$"" is used as a signal to Yacc in this context.

To return a value, the action normally sets the pseudo-vari§$leéto some integer alue. for ex-
ample, an action which does nothing but return the value 1 is

={$$=1;}
To dbtain the values returned by previous actions and the lexical andhegaction may use the (in-

teger) pseudo-ariables $1, $2, . . ., which refer to the values returned by the components of the right side
of a rule, reading from left to right. Thus, if the rule is

A:BCD;
for example, then $2 has the value returned by C, and $3 the value returned by D.
As a more concrete example, we mighténtae rule

expression: “(" expression)" ;
We wish the value returned by this rule to be the value of the expression in parentheses. Then we write

expression: "(" expression)= {$$=%$2;}

As a default, the value of a rule is the value of the first element in it T¥l3.is true gen if there is
no explicit action gien for the rule. Thus, grammar rules of the form

A:B;
frequently need not ke a explict action.
Notice that, although the values of actions are integers, these integers may in fact contain pointers (in

C) or indices into an array (in Ratfor); in thisyvactions can return and reference more complgta
structures.

Sometimes, we wish to get control before a rule is fully parsed, as well as at the end of the rule.
There is no explicit mechanism in Yacc to wallthis; the same effect can be obtainedvéer, by intro-
ducing a ne symbol which matches the empty string, and inserting an action for this syfdratxam-
ple, we might hee a ule describing arif’ ’ statement:

statement: IF "(" expr)" THEN statement

Suppose that we wish to get control after seeing the right parenthesis in order to output sonvéecode.
might accomplish this by the rules:

statement: IF(" expr ")” actn THEN statement
={ call actionl1 }

actn: /*matches the empty string */
={ call action2 }

Thus, the n@ nonterminal symbol actn matches no inputt berves only to call action2 after the
right parenthesis is seen.

Frequentlyit is more natural in such cases to break the rule into parts where the action is needed.
Thus, the abee example might also ha keen written

statement: ifparTHEN statement
={ call actionl1 }

ifpart: IF"(" expr)’
={ call action2 }

In mary applications, output is not done directly by the actions; rathehta structure, such as a
parse tree, is constructed in memanyd transformations are applied to it before output is gener&ade
trees are particularly easy to constructegiroutines which build and maintain the tree structure desired.
For example, suppose we ¥ma C finction “node”, written so that the call

node(L, n1, n2)

creates a node with label L, and descendants n1 and n2, and returns a pointer to the newly created node.
Then we can cause a parse tree to be built by supplying actions such as:

expr: expr “+" expr
={$$=node("+, $1, $3); }

in our specification.

The user may define otheanables to be used by the actions. Declarations and definitions can ap-
pear in tvo places in the Yacc specification: in the declarations section, and at the head of the rules sections,
before the first grammar rule. In each case, the declarations and definitions are enclosed in the marks
“%{"’" and “%} '. Declarationsand definitions placed in the declarations sectiore lgobal scope, and
are thus known to the action statements and the lexical anaBeelarations and definitions placed at the
head of the rules sectionueasope local to the action statemenfus, in the abee example, we might
have included

%({ int variable 0; %}
in the declarations section,, perhaps,
%({ static int variable; %}

at the head of the rules section. If we were writing Ratfor actions, we might want to include some COM-
MON statements at the beginning of the rules section, to &loeasy communication between the actions
and other routinesFor both C and RatforYacc has used only external namegitiaing in ‘yy’’; the user
should &oid such names.

Section 3: Lexical Analysis

The user must supply a lexical analyzer which reads the input stream and communicates tokens (with
values, if desired) to the parsefhe lexical analyzer is an integer valued function calledxyyteboth C
and Ratfor The function returns an irger which represents the type of theaiok Thevalue to be associ-
ated in the parser with that token is assigned to the integiable yyhal. Thus,a lexical analyzer written
in C should begin

yylex () {
extern int yylval;

while a lexical analyzer written in Ratfor should begin

integer function yylex(yylval)
integer yylval

Clearly, the parser and the lexical analyzer must agree on the type numbers in order for communica-
tion between them to tekdace. Theseaumbers may be chosen by Yacc, or chosen by the lrseither
case, the'define” mechanisms of C and Ratfor are used tovalloe lexical analyzer to return these num-
bers symbolically For example, suppose that the @akname DIGIT has been defined in the declarations
section of the specification. The redat portion of the lexical analyzer (in C) might look like:

yylex() {
extern int yylval;

int c;
¢ = getchar();
iflc>="0"&& c<="9"){

yylval = c-"0";
return(DIGIT);

The releant portion of the Ratfor lexical analyzer might look like:

integer function yylex(yylval)
integer yylval, digits(10), c

data digits(1) / "0" /;
data digits(2) / "1" /;

data digits(10) / "9" /;

et c to the next input character

doi=1,10{
if(c .EQ. digits(i)) {
yylval = i-1
yylex = DIGIT
return
}

In both cases, the intent is to return aetokype of DIGIT and a value equal to the numericalue
of the digit. Provided that the beical analyzer code is placed in the programs section of the specification,
the identifier DIGIT will be redefined to be equal to the type number associated witheéhentoke DIG-
IT.

This mechanism leads to clear and easily modified lexical analyzers; the only pitfall is that it makes it
important to ®oid using ay names in the grammar which are reserved or significant in the chosen lan-
guage; thus, in both C and Ratftre use of token names 6f'” or *‘yylex’’ will almost certainly cause se-
vere difficulties when the lexical analyzer is compiled. The token n&mner” is resered for error han-
dling, and should not be usedvey (see Section 5).

As mentioned abe, the type numbers may be chosen by Yacc or by the Usdne default situa-
tion, the numbers are chosen tac¥. Thedefault type number for a literal character is the numerighles
of the characterconsidered as a 1 byte igex. Other tolen names are assigned type numbers starting at
257. ltis a difficult, machine dependent operation to determine the numealoal of an input character in
Ratfor (or Prtran). Thusthe Ratfor user of Yacc will probably wish to set hisnaype numbers, or not
use aw literals in his specification.

To assign a type number to a token (including literals), the first appearance oféhentoke or liter
al in the declarations sectiotan be immediately folleed by a nonrggtive integer This integer is taén
to be the type number of the name or litetdames and literals not defined by this mechanism retain their
default definition. It is important that all type numbers be distinct.

There is one exception to this situatidfor sticky historical reasons, the endmarker mustehgpe
number 0. Note that this is not unattraetin C, snce the nul character is returned upon end of file; in Rat-
for, it makes no senseThis type number cannot be redefined by the user; thus, all lexical analyzers should
be prepared to return 0 as a type number upon reaching the end of their input.

Section 4: Ambiguity, Conflicts, and Precedence

A set of grammar rules ismbiguousdf there is some input string which can be structured mdw
more different vays. r example, the grammar rule

expr: expr ‘= expr;

is a natural way of expressing the fact that one way of forming an arithmetic expression is twgétw
expressions together with a minus sign between thdnfortunately this grammar rule does not complete-
ly specify the way that all complénputs should be structure&or example, if we hee input of the form

expr — expr — expr
the rule would permit us to treat this input either as

(expr — expr) — expr
or as

expr — ((expr — expr)
(We peak of the first aleft associatiorof operators, and the secondright association).

Yacc detects such ambiguities when it is attemptinguiti lthe parser It is instructve to consider
the problem that confronts the parser when itusrgan nput such as

expr — expr — expr
When the parser has read the second, éx@iinput which it has seen:
expr — expr

matches the right side of the grammar rulevab®ne valid thing for the parser to do isreglucethe input
it has seen by applying this rule; after applying the rulepitld/have reduced the input it had already seen
to expr (the left side of the rule). It could then read the final part of the input:

- expr
and again reduce by the ruléd/e e that the effect of this is to &athe left associate interpretation.
Alternatively, when the parser has seen
expr — expr

it could defer the immediate application of the rule, and continue reading (the technicaldeiftmig) the
input until it had seen

expr — expr — expr
It could then apply the grammar rule to the rightmost three symbols, reducing them to expr and leaving

expr — expr
Now it can reduce by the rule aig; the effect is to takthe right associate interpretation. Thudyaving
read

expr — expr

the parser can do twegd things, a shift or a reduction, and has no way of deciding between ene-
fer to this as ahift/reduce conflict.It may also happen that the parser has a choiceoofietyd reductions;
this is called aeduce/reduce conflict.

When there are shift/reduce or reduce/reduce conflicts, Yacc still produces a ltaises this by
selecting one of the valid steps whaet has a choice A rule which describes which choice to reak a
given dtuation is called aisambiguating rule.

Yacc has tw disambiguating rules which arevisked by default, in the absence of ynser directies
to the contrary:

1. Ina shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce byetimier grammar rule (in the input se-
guence).

Rule 1 implies that reductions are deferred whkienthere is a choice, irafar of shifts. Rule2 gives
the user rather crude contralen the behsior of the parser in this situation, but the proper use of reduce/re-
duce conflicts is still a black art, and is properly considered an advanced topic.

Conflicts may arise because of migakn input or logic, or because the grammar rules, while con-
sistent, require a more complparser than Yacc can construdh these cases, the application of disam-
biguating rules is inappropriate, and leads to a parser which is in Eorothis reason, Yaccwabys reports
the number of shift/reduce and reduce/reduce conflicts which were resolved by Rule 1 and Rule 2.

In general, whene it is possible to apply disambiguating rules to produce a correct piliseso
possible to rewrite the grammar rules so that the same inputs are read, but there are no Eonfhiiss.
reason, most previous systemseli¥acc hae wnsidered conflicts to be fatal errors. Our experience has
suggested that this rewriting is somewhat unnatural to do, and produges [gosers; thus, Yacc will pro-
duce parsersven in the presence of conflicts.

As an example of the pe@r of disambiguating rules, consider a fragment from a programming lan-
guage inolving an “if-then-else” construction:

stat: IF (" cond ") stat |
IF “(" cond ") stat ELSE stat ;

Here, we consider IF and ELSE to bedng, cond to be a nonterminal symbol describing conditional (logi-
cal) expressions, and stat to be a nonterminal symbol describing statements. In the following, we shall refer
to these tw rules as thasimple-ifrule and théf-elserule, respectiely.

These tw rules form an ambiguous construction, since input of the form
IF(C1)IF(C2)S1ELSES2
can be structured according to these rules owtays:

IF(C1){
IF(C2)S1
}

ELSE S2
or

IF(C1){
IF (C2)S1
ELSE S2

}

The second interpretation is the oneegiin most programming languages whichseahis construct.Each
ELSE is associated with the last preceding-ELSE'd” | F. In this example, consider the situation where
the parser has seen

IF(C1)IF(C2)S1

and is looking at the ELSE. It can immediatedgiuceby the simple-if rule to get

—-10-

IF (C1) stat
and then read the remaining input,
ELSE S2
and reduce
IF (C1) stat ELSE S2
by the if-else rule. This leads to the first of thewedbgoupings of the input.
On the other hand, we mahiftthe ELSE and read S2, and then reduce the right hand portion of
IF(C1)IF (C2)S1ELSE S2
by the if-else rule to get
IF (C1) stat

which can be reduced by the simple-if rule. This leads to the second of treegadaapings of the input,
which is usually desired.

Once again the parser can dmtvalid things — we hae a $ift/reduce conflict. The application of
disambiguating rule 1 tells the parser to shift in this case, which leads to the desired grouping.

Notice that this shift/reduce conflict arises only when there is a particular current input symbol,
ELSE, and particular inputs already seen, such as

IF(C1)IF(C2)S1

In general, there may be maconflicts, and each one will be associated with an input symbol and a set of
previously read inputs.The previously read inputs are characterized bysthteof the parserwhich is as-
signed a nonrgative integer The number of states in the parser is typically tavfive imes the number of
grammar rules.

When Yacc is imoked with the \erbose (-v) option (see Appendix B), it produces a file of user out-
put which includes a description of the states in the paFerexample, the output corresponding to the
above example might be:

23: shift/reduce Conflict (Shift 45, Reduce 18) on ELSE
State 23

stat : IF (cond) stat
stat : IF (cond) stat ELSE stat

ELSE shift45
reduce 18

The first line describes the conflict, giving the state and the input symbol. The state titls,folial a
brief description of the grammar rules which arevaci this state. The underliné *’ describes the per
tions of the grammar rules whichvgakeen seen. Thus in the example, in state 23 we keen input
which corresponds to

IF (cond) stat

and the tw grammar rules shown are a@id this time. The actions possible are, if the input symbol is
ELSE, we may shift into state 45. In this state, we should find as part of the description a line of the form

stat : IF (cond) stat ELSE stat

because in this state we willveread and shifted the ELSE. Back in state 23, the alteenattion, de-

-11—

scribed by “”, is to be @ne if the input symbol is not mentionexpécitly in the abwe ations; thus, in
this case, if the input symbol is not ELSE, we should reduce by grammar rule 18, which is presumably

stat: IF "(" cond ") stat

Notice that the numbers followingshift'’ commands refer to other states, while the numberswioltp
“reduce” commands refer to grammar rule numbelrs.most states, there will be only one reduce action
possible in the state, and this willkalys be the default command.he user who encounters upected
shift/reduce conflicts will probably want to look at trexose output to decide whether the default actions
are appropriateln really tough cases, the user might need tavkmore about the behavior and construc-
tion of the parser than can bevered here; in this case, a reference such as [1] might be consulted: the ser
vices of a local guru might also be appropriate.

There is one common situation where the rulgerggbove for resolving conflicts are not digfent;
this is in the area of arithmetixmressions. Mostf the commonly used constructions for arithmeke e
pressions can be naturally described by the notiqresfedencdevels for operators, together with infor
mation about left or right associdty. It turns out that ambiguous grammars with appropriate disam-
biguating rules can be used to create parsers whiclaster fand easier to write than parsers constructed
from unambiguous grammars. The basic notion is to write grammar rules of the form

expr : expr OP expr
and
expr : UNARY expr

for all binary and unary operators desired. This creates a very ambiguous gravitmanary parsing

conflicts. Asdisambiguating rules, the user specifies the precedence, or binding strength, of all the opera-
tors, and the associativity of the binary operatdisis information is sufficient to ale Yacc to resole the

parsing conflicts in accordance with these rules, and construct a parser which realizes the desired prece-
dences and associativities.

The precedences and assovitiis are attached to tokens in the declarations section. This is done
by a series of lines beginning with a Yaaakord: %left, %right, or %nonassoc, folled by a list of to-
kens. All of the tolens on the same line are assumed t@ iee same precedencesdband associatity;
the lines are listed in order of increasing precedence or binding strength. Thus,

%left "+ -

Y%left *
describes the precedence and associativity of the four arithmetic operators. Plus and minus are left associa-
tive, and hare lower precedence than star and slash, which are also left associdte keyword %right is

used to describe right assocratigperators, and theekword %nonassoc is used to describe operatoss, lik
the operator .L in Fortran, which may not associate with themselves; thus,

A.LT.B.LT.C

is illegd in Fortran, and such an operator would be described withetimeokd %nonassoc inatc. Asan
example of the behavior of these declarations, the description

—12—

%right "=’
Yleft "+ -
Yleft * "/

%%

expr :
expr =" expr |
expr “+" expr |
expr =" expr |
expr “* expr |
expr /" expr |
NAME ;

might be used to structure the input
a=b=c¢d-e-f*g
as follows:

a=(b=((cd)-e)-(9)))

When this mechanism is used, unary operators must, in generaleha giecedence. Amteresting situ-
ation arises when we Y@ a unary operator and a binary operator whickiehtae same symbolic represen-
tation, but different precedences. An example is unary and binary "-"; frequeatly minus is gien the
same strength as multiplication, aree higher, while binary minus has awer strength than multiplica-
tion. We can indicate this situation by use of anotheywkord, %prec, to change the precedeneel lasso-
ciated with a particular grammar rul@prec appears immediately after the body of the grammar rule, be-
fore the action or closing semicolon, and is feka by a token name or literal; it causes the precedence of
the grammar rule to become that of theetokhame or literal. Thus, to maknary minus hee the same
precedence as multiplication, we might write:

Yleft "+ -
Y%left "+ 7/

%%

expr :
expr “+" expr |
expr =" expr |
expr “* expr |
expr /" expr |
"= expr %prec * |
NAME ;

Notice that the precedences which are described by %left, %right, and %nonassoc are independent of
the declarations of token names by %ok Asymbol can be declared by %token, and, later in the declara-
tions section, be gén a precedence and associdly by one of the abe methods. lItis true, havever, that
names which are gin a precedence or associativity are also declared to ntomes, and so in general
do not need to be declared by %token, although it does not hurt to do so.

As we mentioned abve, the precedences and associativities are usedby 6 resole parsing con-
flicts; they giverise to disambiguating rulesormally, the rules work as follows:

—13-—

1. Theprecedences and associativities are recorded for those tokens and literals wiobrha

A precedence and associativity is associated with each grammar rule; it is the precedence and asso-
ciativity of the last token or literal in the body of the ruléthe %prec construction is used, iteo-

rides this dedult. Noticethat some grammar rules mayhao precedence and associativity associ-

ated with them.

3. Whenthere is a reduce/reduce conflict, or there is a shift/reduce conflict and either the input symbol
or the grammar rule, or both, has no precedence and asstycagsociated with it, then the dvdis-
ambiguating rules géen at the beginning of the section are used, and the conflicts are reported.

4, If there is a shift/reduce conflict, and both the grammar rule and the input chareetmehadence
and associativity associated with them, then the conflict is exsatvavar of the action (shift or re-
duce) associated with the higher precedence. If the precedences are the same, then thétyssociati
is used; left associag implies reduce, right associaiimplies shift, and nonassociating implies er
ror.

There are a number of point®rh making about this use of disambiguation. There is no reporting
of conflicts which are resadd by this mechanism, and these conflicts are not counted in the number of
shift/reduce and reduce/reduce conflicts found in the gramitas means that occasionally mistakes in
the specification of precedences disguise errors in the input grammar; it is a good idea to be sparing with
precedences, and use them in an essentietipkbook’ fashion, until somexperience has beeraiged.
Frequently not enough operators or precedenceghaen specified; this leads to a number of messages
about shift/reduce or reduce/reduce conflicthe cure is usually to specify more precedences, or use the
%prec mechanism, or botht is generally good to examine the verbose output file to ensure that the con-
flicts which are being reported can be validly resolved by precedence.

Section 5: Error Handling

Error handling is an extremely difficult area, and ynafhthe problems are semantic ones. When an
error is found, for xample, it may be necessary to reclaim parse tree storage, delete or alter symbol table
entries, and, typicallyset switches towid putting out ag further output.

It is generally not acceptable to stop all processing when an error is found; we wish to continue scan-
ning the input to find gnfurther syntax errors. This leads to the problem of getting the paestarted”
after an error The general class of algorithms to do thiglnes reading ahead and discarding a number of
tokens from the input string, and attempting to adjust the parser so that input can continue.

To dlow the user some controler this process, Yacc provides a simple, but reasonably general, fea-
ture. Thetoken name‘érror” is resened for error handling. This name can be used in grammar rules; in
effect, it suggests places where errors agpeeted, and recery might tale dace. Theparser attempts to
find the last time in the input when the specialetokerror” is permitted. Theparser then bekas &
though it sa the token nameérror” as an hput token, and attempts to parse according to the rule encoun-
tered. Theoken at which the error as detected remains the next input token after this error token is pro-
cessed. Iho special error rules W@ been specified, the processindeefively halts when an error is de-
tected.

In order to preent a cascade of error messages, the parser assumes that, after detectingtane-error
mains in error state until three tokensidadeen successfully read and shiftdflan error is detected when
the parser is already in error state, no error messageeis ghd the input token is quietly deleted.

As a common example, the user might include a rule of the form
statement : error ;

in his specification. This would, in effect, mean that on a syntax error the patddrattempt to skipwer

the statement in which the error was seen. (Noticgehs, that it may be difficult or impossible to tell the
end of a statement, depending on the other grammar riMeme preciselythe parser will scan ahead,
looking for three tokens that mighgialy follow a gatement, and start processing at the first of these; if the
beaginnings of statements are not sufficiently distirgtit may male a filse start in the middle of a state-

—14 -

ment, and end up reporting a second error where there is in fact no error.

The user may supply actions after these special grammar rules, just as after the other grammar rules.
These actions might attempt to reinitialize tables, reclaim symbol table space, etc.

The abee form of grammar rule is very general, but serat difficult to control. Somevhat easier
to deal with are rules of the form

statement : error ;" ;

Here, when there is an erytite parser will again attempt to skipeothe statement, but in this case will do
so by skipping to the next’*. All tokens after the error and before thatrig’’ give syntax errors, and are
discarded. Whethe *;"’ is seen, this rule will be reduced, and/aitleanup’ action associated with it will
be performed.

Still another form of error rule arises in intergetigoplications, where we may wish to prompt the
user who has incorrectly input a line, andallom to reenter the line. In C we might write:

inputline: error\n” prompt inputline

={$$=%4, };

prompt: [*matches no input */
={ printf("Reenter last line: "); };

There is one difculty with this approach; the parser must correctly process three input tokens before it is
prepared to admit that it has correctly resynchronized after the @hros, if the reentered line contains er

rors in the first tw tokens, the parser will simply delete the offending tokens, arelrgi message; this is
clearly unacceptableror this reason, there is a mechanism in both C and Ratfor which can be used to force
the parser to bele that resynchronization has taken place. One need only include a statement of the form

yyerrok ;

in his action after such a grammar rule, and the desired effect velld@te; this name will bexpanded,

using the “# definé’mechanism of C or theédefine” mechanism of Ratfgpiinto an appropriate code se-
guence. Br example, in the situation discussedwbahere we vant to prompt the user to produce input,
we probably vant to consider that the original error has beenveeed when we hae throvn avay the pre-

vious line, including the mdine. Inthis case, we can reset the error state before putting out the prompt
message. Thgrammar rule for the nonterminal symbol prompt becomes:

prompt: [*matches no input */
={
yyerrok;
printf("Reenter last line: ");

}

There is another special feature which the user may wish to use in ernoeryeods mentioned
above, the tolen seen immediately after tHerror” symbol is the input token at which the error was dis-
covered. Sometimeghis is seen to be inappropriate; faample, an error regery action might tak yoon
itself the job of finding the correct place to resume input. In this case, the user wishes a way of clearing the
previous input token held in the pars@ne need only include a statement of the form

yyclearin ;

in his action; again, thisxpands, in both C and Ratfdo the appropriate code sequendex example,

suppose the action after error were to call some sophisticated resynchronization routine, supplied by the us-
er, which attempted to advance the input to the beginning of tktevalkid statement. After this routineas

called, the next token returned by ywieould presumably be the first tk in a lgd statement; we wish

to throw away the old, illegd token, and reset the error state might do this by the sequence:

—15—

statement : error

resynch();
yyerrok ;
yyclearin ;

}

These mechanisms are admittedly crude, but devdido a simple, fairly déctive recosery of the
parser from manerrors, and hae the virtue that the user can géiandles’ by which he can deal with the
error actions required by the lexical and output portions of the system.

Section 6C: The C Language Yacc Environment

The default mode of operation in Yacc is to write actions and #ealeanalyzer in C. This has a
number of adantages; primarilyit is easier to write character handling routines, such as the lexical analyz-
er, in a language which supports character-by-character 1/0, and has shifting and masking operators.

When the user inputs a specification to Yacc, the output is a file of C programs, ‘galéd™.
These are then compiled, and loaded with a library; the library has default versions of a number of useful
routines. Thissection discusses these routines, and the user can write his own routines if desir&the
name of the Yacc library is system dependent; see Appendix B.

The subroutine produced by Yacc is callggparse’; it is an integer valued function. When it is
called, it in turn repeatedly callyylex’’, the lexical analyzer supplied by the user (see Section 3), to ob-
tain input tolens. Eentually either an error is detected, in which case (if no errorvagds possible) yy-
parse returns thealue 1, or the lexical analyzer returns the endmarker token (type number 0), and the pars-
er accepts. In this case, yyparse returns the value 0.

Three of the routines on theadt library are concerned with thexternal’ environment of yyparse.
There is a defaultrhain” program, a defaultihitialization” routine, and a defaultaccept’ routine, re-
spectvely. They are so simple that tlyewill be given here in their entirety:

main(argc, argv)
int argc;
char *argv[]
{
yyinit(argc, argv);
if(yyparse())
return;

yyacept();

yyinit() {}

yyacept() { }

By supplying his own versions of yyinit and/or yyaccpt, the user can get control either before the parser is
called (to set options, open input files, etc.) or after the accept action has been done (to close files, call the
next pass of the compilgetc.). Notethat yyinit is called with the tav“command lin€’ arguments which
have keen passed into the main program. If neither of these routines is redefinedathesitefaition sim-
ply looks like a @ll to the parseffollowed by the termination of the program. Of course, inyntases the
user will wish to supply his own main program; fe@mple, this is necessary if the parser is to be called
more than once.

The other major routine on the library is callggérror”; its main purpose is to write out a message

when a syntax error is detectef.has a number of hooks and handles which attempt t@ thak error
message general and easy to understand. This routine is somewhat more complex, but still approachable:

16—

extern int yyline; /* input line number */

yyerror(s)

char *s;

{
extern int yychar;
extern char *yysterm|[|;

printf("\n%s", s);
if(yyline)
printf(", line %d,", yyline);
printf(" on input: ");
if(yychar >= 0400)
printf("%s\n", yysterm[yychar—0400]);
else switch (yychar) {
case “\t": printf("\t\n"); return;
case "\n": printf("\n\n"); return;
case "\0: printf("$end\n"); return;
default: printf("%c\n" , yychar); return;
}
}

The agument to yyerror is a string containing an error message; most uguallisyntax error’. yyerror

also uses the external variables yyline, yychad yysterm.yyline is a line number which, if set by the us-

er to a nonzero numbewill be printed out as part of the error messaggchar is a variable which contains

the type number of the current &k yysternhas the names, supplied by the pgmrall the tokens which

have rmames. Thusthe routine spends most of its time trying to print out a reasonable name for the input
token. Thebiggest problem with the routine avei is that, on Unix, the error message does not go out on
the error file (file 2).This is hard to arrange in such a way that it works with both the portable I/O library
and the system |/O library; if a way can berked out, the routine will be changed to do thBeware:

This routine will not work if ap token names hea been gven redefined type numbers. In this case, the us-

er must supply his own yyerror routine. Hopefuthis “feature’ will disappear soon.

Finally, there is another feature which the C user of Yacc might wish to use. The integer variable yy-
dehug is normally set to Olf it is set to 1, the parser will output a verbose description of its actions, includ-
ing a discussion of which input symbols/edeen read, and what the parser actions are. Depending on the
operating environment, it may be possible to set this variable by using a debugging system.

Section 6R: The Ratfor Language Yacc Environment

For reasons of portability or compatibility with existing software, it may be desired toasety
generate parsers in Ratfar, by extension, in portable dftran. Theuser is likely to work considerably
harder doing this than he might if he were to use C.

When the user inputs a specification to Yacc, and specifies the Ratfor option (see Appendix B), the
output is a file of Ratfor programs callégtab.r”. Theseprograms are then compiled, and provide the de-
sired subroutine.

The subroutine produced by Yacc which does the input process is gerifiaction called‘yy-
pars’. Whenit is called, it in turn repeatedly callyylex’’, the lexical analyzer supplied by the user (see
Section 3).Eventually either an error is detected, in which case (if no errorvagds possible) yypars re-
turns the value 1, or the lexical analyzer returns the enémésipe number 0), and the parser accefts.
this case, yypars returns 0.

Unlike the C program situation (see Section 6C) there is no library of Ratfor routines which must be
used in the loading process. As a side effect of thesuser must supply a mainogram which calls yy-

—17 -

pars. A suggested Ratfor main program is

integer yypars
n = yypars(0)
if(n.EQ.0){
... here if the program accepted
}else {
... here if there were unreeerable errors
}

end

Notice that there is no easy way for the user to get control when an error is detected, since the Fortran lan-
guage provides only a very crude character string capability.

There is another feature which the Ratfor user might wish to use. The argument to yypars is normal-
ly 0. If it is set to 1, the parser will output arbose description of its actions, including a discussion of
which input symbols he been read, and what the parser actions Bugring the input process, thalue
of this debug flag is kept in a common variable yydebu, whicteikhble to the actions and may be set and
reset at will.

Statement labels 1 through 1000 are reserved for the pardenay not appear in actions; note that,
because Ratfor has a more modern control structure tivénark;, it is rarely necessary to use statement la-
bels at all; the most frequent use of labels in Ratfor is in formatted 1/O.

Because Fortran has no standard character set andenat dandard character width, it is fidult
to produce a lexical analyzer in portable Fortran The usual solution is to provide a routine which does a
table search to get the internal type number for each input chavethethe understanding that such a rou-
tine can be recoded to run far faster foy particular machine.

Finally, we must warn the user that the Ratfor feature @f¢rhas been operational for a much shorter
time than the other portions of the systelfnpast experience is grguide, the Ratfor support will gelop
and become more powerful and better human engineered in response to user complaints and requirements.
Thus, the potential Ratfor user might do well to contact the author to discuss his own particular needs.

Section 7. Hints for Preparing Specifications

This section contains miscellaneous hints on preparfigjesit, easy to change, and clear specifica-
tions. Theindividual subsections are, more or less, independent; the reader saeinfpivthe first time
may well find that this entire section could be omitted.

Input Style
It is difficult to input rules with substantial actions and stiNda eadable specification fileThe

following style hints owe much to Brian Kernighan, and are officially endorsed by the author.

a. Useall capital letters for token names, all lower case letters for nonterminal naimssuule comes
under the heading of “knowing who to blame when things go wrong."

b. Rut grammar rules and actions on separate lines. This allows either to be changed without an auto-
matic need to change the other.

C. Putall rules with the same left hand side togethert the left hand side in only once, and let all fol-
lowing rules begin with a vertical bar.

d. Indentrule bodies by one tab stop, and action bodies bytaty stops.

The example in Appendix A is written following this style, as are daengles in the text of this pa-
per (where space permits). The user mustemgkhis ovn mind about these stylistic questions; the central
problem, howeer, is to make the rules visible through the morass of action code.

—18-—

Common Actions

When sgeral grammar rules va the same action, the user might well wish to provide only one code
sequence. Aimple, general mechanism is, of course, to use subroutine calls. It is also possible to put a la-
bel on the first statement of an action, and let other actions be simply a goto to this label. Thus, if the user
had a routine which built trees, he might wish teehanly one call to it, as follows:

expr :
expr '+ expr =
{ binary:
3 = btree($1, $2, $3);
H
expr =" expr =
{
goto binary;
H
expr * expr =
{
goto binary;
H

Left Recursion

The algorithm used by the Yacc parser encourages so called “left vetgsammar rules: rules of
the form

name : name restf rule;

These rules frequently arise when writing specifications of sequences and lists:

list:
item |
list”,” item;
and
sequence :
item |

sequence item ;

Notice that, in each of these cases, the first rule will be reduced for the first iterandrlye second rule
will be reduced for the second and all succeeding items.

If the user were to write these rules right readgj such as

sequence :
item |
item sequence ;

the parser would be a bit biggend the items would be seen, and reduced, from right to left. More seri-
ously, an internal stack in the parser would be in dangemvefflowing if a very long sequence were read.
Thus, the user should use left recursion wiegneeasonable.

The user should also consider whether a sequence with zero elementg he&aming, and if so,
consider writing the sequence specification with an empty rule:

sequence :
| 7* empty */
sequence item ;

—-19-—

Once again, the first ruleould alvays be reduced exactly once, before the first item was read, and then the
second rule would be reduced once for each item r&xgerience suggests that permitting empty se-
guences leads to increased genetalityich frequently is not\édent at the time the rule is first written.
There are cases, Wwever, when the Yacc algorithm caaif when such a change is made. In effect, con-
flicts might arise when &tc is asked to decide which empty sequence it has seen, when it hasn’t seen
enough to kne! Nevertheless, this principle is still worth following wheee possible.

Lexical Tie-ins

Frequently there are lexical decisions which depend on the presence of various constructions in the
specification. Br example, the lexical analyzer might want to delete blanks notrbatlypot within quot-
ed strings. Or names might be entered into a symbol table in declarations, but not in expressions.

One way of handling these situations is to create a global flag whigarigreed by the lexical ana-
lyzer, and set by actionsFor example, consider a situation where weda pogram which consists of 0 or
more declarations, followed by O or more statemeWs. ceclare a flag calleddflag”, which is 1 during
declarations, and 0 during statemenige may do this as follows:

%
int dflag ;
%}
%%
program :
decls stats

decls :
=/* empty */
{

H

decls declaration ;

dflag = 1;

stats :
=/* empty */
{

H

stats statement ;

dflag = 0;

... aherrules ...

The flag dflag is ne set to zero when reading statements, and 1 when reading declaratim, for the

first token in the first statemerithis token must be seen by the parser before it can tell that the declaration
section has ended and the statements bagun. Frequentlyhoweva, this single token exception does not
affect the lexical scan required.

Clearly, this kind of ‘backdoor’ approach can be elaborated on to a noxiogsede Neertheless, it
represents a way of doing some things that are difficult, if not impossible, to do otherwise.

—20-—

Bundling

Bundling is a technique for collecting together various character strings so thaathiee output at
some later time. It is ded from a feature of the same name in the compiler/compiler TMG [6].

Bundling has tw components — a nice user interface, and aecliemplementation trick.They will
be discussed in that order.

The user interface consists ofawoutines, “bundle€’and “bprint”.

bundle(al, a2, ..., an)
accepts aariable number of arguments which are either character strings or bundles, and ratmdie,a b
whose value will be the concatenation of the values of al, . . ., an.

bprint(b))

accepts a bundle as argument and outputs its value.

For example, suppose that we wish to read arithmegresssions, and output function calls to rou-
tines called “add”, “sub”, “mul”, “div”, and “assign’’. Thus,we wish to translate

a=b-cd
into
assign(a,sub(b,mul(c,d)))

A Yacc specification file which does this isai in Appendix D; this includes an implementation of
the bundle and bprint routineé rule and action of the form

expr:
expr '+ expr =
{
$$ = bundle("add(", $1, ",", $3,")");
}

causes the returned value of expr to be comendlb, whose value is the character string containing the de-
sired function call. Each NAME token has alue which is a pointer to the actual name which has been
read. Finallywhen the entire input line has been read and ahgevhas been bundled, the value is written
out and the bundles and names are cleared, in preparation for the next input line.

Bundles are implemented as arrays of pointers, terminated by a zero.p&eutér pointer either
points to a bundle or to a character string. There is an, aakgd bundle spacewhich contains all the
bundles.

The implementation trick is to check the values of the pointers in bundles - if the pointer points into
bundle space, it is assumed to point to a bundle; otherwise it is assumed to point to a character string.

The treatment of functions with arable number of arguments, dikundle, is likely to differ from
one implementation of C to another.

In general, one may wish to\ea $mple storage allocator which allocates and frees bundles; in or
der to handle situations where it is not appropriate to completely clear all of bundle space at one time.

Resewved Words

Some programming languages permit the user to vsdswike “if’ ', which are normally reseed,
as label or variable names, provided that such use does not conflict withaheséeof these names in the
programming languageThis is extremely hard to do in the frama@k of Yacc, since it is difficult to pass
the required information to thexieal analyzer which tells it “this instance of if is ayword, and that in-
stance is aariable’. The user can maka $ab at it, using the mechanism described in the last subsection,
but it is difficult.

—21—

A number of vays of making this easier are under advisement, and one will probably be supported
eventually. Until this day comes, | suggest that thekords bereserved;that is, be forbidden for use as
variable names. There are powerful stylistic reasons for preferring this, anyway (he said weakly . . .).

Non-integer Values

Frequentlythe user wishes to @ values which are bigger than integers; again, this is an area where
Yacc does not makthe job as easy as it might, and some additional supporely. likevatheless, at the
cost of writing a storage managtre user can return pointers or indices to blocks of storage big enough to
contain the full values desired.

Previous Work

There hae been maw previous applications of &cc. Theuser who is contemplating a big applica-
tion might well find that others kia devdoped releant techniques, orven portions of grammarsYacc
specifications appear to be easier to change than thealeqicomputer programs, so that the “prior’art’
is more relgant here as well.

Section 8: User Experience, Summanand Acknowledgements

Yacc has been used in the construction of a C compiler for the Honeywell 6000, a system for typeset-
ting mathematical equations, adevd implementation language for the PDP 11, APL and Basic compil-
ers to run under the UNIX system, and a number of other applications.

To summarize, Yacc can be used to construct parsers; these parsers can interaityirflexible
way with the lical analysis and output phases of a larger system. The system also provides an indication
of ambiguities in the specification, and allows disambiguating rules to be supplied te tessévambigui-
ties.

Because the output of Yacc is largely tables, the system isveBldtinguage independent. In the
presence of reasonable applicationaccrcould be modified or adapted to produce subroutines for other
machines and languages. In addition, we continue to seek better algorithms teeitnerexical analysis
and code generation phases of compilers produced using Yacc.

This document wuld be incomplete if | did not g aedit to a most stimulating collection of users,
who hae gpaded me beyond my inclination, and frequently beyond my aliilitheir endless search for
“ one more feature’ Their irritating unwillingness to learn koto do things my way has usually led to my
doing things their way; most of the time, yHeavebeen right. B. WKernighan, PJ. Rauger S. I. Feld-
man, C. Imagna, M. E. Lesk, and A.y8er will recognize some of their ideas in the current version of
Yacc. Al Aho also deserves recognition for bringing the mountain to Mohammed, andaotirsr f

— 22—

References
1 Aho, A.V. and Johnson, S.C., “LR d@sing’, Computing Sureys, Wl 6, No 2, June 1974, pp.
99-124.

2 Aho, A.V., Johnson, S.C., and Uliman, J.D., “Deterministic Parsing of Ambiguous Grammess’
ceedings of the A.C.M. Symposium on Principles of Programming Languages, October 1973, pp.
1-21; to appear in CACM.

3 Aho, A.V. and Ullman, J.D., Theory ofdPsing, Translation, and Compiling/olume 1 (1972) and
Volume 2 (1973), Prentice-Hall, Engteod Cliffs, N.J.

Kernighan, B. W., Ratfoa Rational Fortran

Ryder, B. B., “The PFOR' Verifier,” Software—Practice and Experience, Vol 4 (1974), pp 359-377.
Mcliroy, M. D., A Manual for the TMG Compiler-writing Language

Ritchie, D. M., C Reference Manual

N o o1 b~

23—

Appendix A: A Simple Example

This example gies the complete Yacc specification for a small desk calculator; the desk calculator
has 26 registers, labeled a through z, and accepts arithmetic expressions made up of the operators +, —, *, /,
% (mod operator), & (bitwise and), | (bitwise or), and assignment. If an expression is an assignment at the
top level, the \alue is not printed; otherwise it is. As in C, an integer which begins with 0 (zero) is assumed
to be octal; otherwise, it is assumed to be decimal.

As an example of a Yacc specification, the desk calculator does a reasonable jotiraf gievay
that precedences and ambiguities are used, as well as showirgntple error receery operates.The
major oversimplifications are that the lexical analysis phase is much simpler than for most applications, and
the output is produced immediateline by line. Note the way that decimal and octal integers are read in
by the grammar rules; frequenttiiis job is better done by the lexical analyzer.

%token DIGIT LETTER/* these are token names */

%left °|’ [* declarations of operator precedences */
%left &
%left "+ -
%left * | "%’
%left UMINUS * supplies precedence for unary minus */
%{ /* declarations used by the actions */

int base;

int regs[26];
90}

%% /* beginning of rules section */

list : [* list is the start symbol */
| F empty */
list stat "\n" |
list error \n" =

{
}

yyerrok ;

stat :
expr =
{

}H
LETTER "=" expr =
{

}

printf("%d\n", $1) ;

regs[$1] = $3 ;

expr :
‘(expr’) =

{
H

expr '+ expr =

{

$$=9%2;

$$=%1+3$3;
H
expr =" expr =
{
$$=%1-9%3;
H
expr * expr =
{
$5=%1*3%3;
H
expr /" expr =
{
$$=%1/%3;
H
expr “%” expr =
{
$5=%1% $3 ;
H
expr & expr
{
$$5=%1&3%3;
H
expr ’|” expr
{
$$=9%1|9%$3;
H
"~ expr %precUMINUS
{
$$=-9%2;
H
LETTER
3 =regs[$1] ;
H
number ;
number :
DIGIT =
{
$$=9%1;
base =10 ;
if($1==0)
base =8 ;
H
number DIGIT =
{
$$ = base * $1 + $2 ;
}

%%

yylex() /* lexaical analysis routine */

/* start of programs */

24—

25—

/* returns LETTER for a lower case lettgylval = 0 through 25 */
/* return DIGIT for a digit, yylval = 0 through 9 */
/* all other characters are returned immediately */

intc;
while((c=getchar())=="")
if(c >=a’ & c <=7)

yylval=c-"a";
return(LETTER) ;

}

iflc>="0"&& c<="9"){
yylval=c-"0";
return(DIGIT) ;

}

return(c) ;

— 26—

Appendix B: Use of Yacc on Unix
Suppose that the Yacc specification is on a file called \fikle actions are in C, Yacc isvioked by
yacc Yfile
The output appears on file y.taba@ @mpile the parser and load it with the Yacc librase the command
cc y.tab.c -ly
If Yacc is invoked with the option -v:
yacc -V Yfile
a verbose description of the parser is produced on filetgut. TheC user should consult section 6C for
more information about the run time environment.
If the actions are in Ratfpthe user should iroke Yacc with the option —r:

yacc —r Yfile
The Ratfor output appears on file y.tab.r It may be compiled by
rc -2 y.tab.r

Note that when dcc is used to produce Ratfor programs, there is no need to load these programg with an
library.
If the —v action is also iroked:
yacc -rv yfile

a verbose description of the parser is produced on.filgtput. TheRatfor user should consult section 6R
for more information about the run time environment.

Appendix C: Old Features Supported but not Encouraged

This appendix mentions synonyms and features which are supported for historical coitibufiby
various reasons, are not encouraged.

1. Literalsmay be delimited by double quotes’&s well as single quotes “”.

2. Literalsmay be more than one character lomfgall the characters are alphabetic, numeric, ,ahe
type number of the literal is defined, just as if the literal did net tree quotes around iOtherwise,
it is difficult to find the value for such literals.

The use of multi-character literals isdilg to mislead those unfamiliar with Yacc, since it suggests
that Yacc is doing a job which must be actually done by the lexical analyzer.

3. Mostplaces where % is dal, backslashV'’ may be used.In particular \\ is the same as %%, \left
the same as %left, etc.

4. Thereare a number of other synonyms:

%< is the same as %left

%> is the same as %right

%binary and %?2 are the same as %nonassoc
%0 and %term are the same as %token

%= is the same as %prec

5. Thecurly braces'{ " and “} " around an action are optional if the action consists of a single C state-
ment. (Thg are alvays required in Ratfor).

—27 —

Appendix D: An Example of Bundling

The following program is arxample of the technique of bundling; this example is discussed in Sec-
tion 7.

[* warnings:
1. Thisworks on Unix; the handling of functions with a variable number of arguments is different on
different systems.

2. A number of checks for array boundsvbaeen left out to woid obscuring the basic ideasytb
should be there in a practical program.

*/

%token NAME

%right "=’
Yleft "+ -
Yleft * "/

%%

lines :
=/* empty */

bclear() ;
H
lines expr '\n" =
{
bprint($2) ;
printf("\n") ;
bclear() ;
H
lines error '\n" =
{
bclear() ;
yyerrok;

}s

expr :
expr '+ expr =

{
H

expr =" expr =

$$ = bundle("add(", $1, ",", $3,")");

3 = bundle("sub(", $1, ",", $3, ")");
H
expr * expr =
{

$$ = bundle("mul(", $1, ",", $3,")");

28—

H
expr /" expr =
{
$$ = bundle("div(", $1,",", $3,")");
H
‘(expr’) =
{
$$ = $2;
H
NAME "=" expr =
$$ = bundle("assign(", $1, ",", $3,)");
H
NAME ;

%%

#define nsiz00
char names[nsizeinptr { names };

#define bsiz&00
int bspace[bsizelbptr { bspace };

yylex()
{ .
int c;
¢ = getchar();
while(c=="")
¢ = getchar();
if(c>="a" && c<="2") {
yylval = nptr;
for(; c>="a" && c<="z"; c=getchar())
*nptr++ = c;
ungetc(c);
*nptr++ = "\0";
return(NAME);
}
return(c);
}
bclear()
{

nptr = names;
bptr = bspace;
}

bundle(al,a2,a3,a4,a5)

{
inti, j, *p, *obp;

—29_

p = &al;
i = nargs();
obp = bptr;

for(j=0; j<i; ++j)
*bptr++ = *p++;
*bptr++ = 0;
return(obp);
}

bprint(p)
int *p;
{

if(p>=bspace && p< &bspace[bsize]) /* bundle */
while(*p !1=0)
bprint(*p++);
else printf("%s",p);

